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Abstract

In this article, we measure how no-arbitrage helps to improve the stan-
dard Nelson and Siegel model. I begin with deriving a Nelson and Siegel
representation from a two factors term structure model. I estimate then
the two representations with Kalman filter and maximum likelihood on
US data from 1952 to 1998. The comparison reveals that a proper risk
premium contributes to explain better several stylized facts (variance de-
composition, rejection of the expectation hypothesis, out-of-sample fore-
cast), without deteriorating usual Nelson and Siegel achievements (yield
curve fitting and parameters parsimony).

We therefore propose an easy solution to integrate in a standard two–
factors N&S model, a risk premium which satisfies properly main empirical
features.
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1 Introduction

Nelson and Siegel models are popular amongst some financial experts, notably
certain asset managers, central bankers or debt managers. As reported in a
recent report from the Bank for International Settlements (Oct. 2005) [16] re-
garding zero-coupon yields curves, most of central banks use Nelson and Siegel
approaches. To my mind, there are two reasons for this popularity. First, it
does a pretty good job in fitting the yield curve. Second, it provides a simple
framework as well as for the parameters estimation as for the economic inter-
pretation. Nelson and Siegel gives indeed a simple analytical expression for the
zero-coupon yield. It expresses the yield as the weighted sum of three terms: a
level factor, a slope one and a curvature one. One of its main drawbacks is its
lack of theoretical foundations. Whereas a wide part of interest rates models
refers to no-arbitrage theory, Nelson and Siegel do not. As a consequence, it
does not propose an explicit term structure risk premium modeling.

I have two main objectives in this article: (i) deriving properly a no-arbitrage
Nelson and Siegel representation and (ii) investigating the empirical comparison
with standard model through several aspects: yield curve fitting, risk premium
modeling, variance decomposition and out-of-sample forecast.

Several reasons motivate imposing no-arbitrage in Nelson and Siegel mod-
els. First, from a financial point of view, no-arbitrage appears as a reasonable
assumption for bonds markets, which are deep and liquid. In a pricing perspec-
tive, no-arbitrage is also a preliminary for the derivatives (vanilla caps and floors
for the simplest ones) pricing. Standard Nelson and Siegel does not allow it,
whereas the no-arbitrage one could. Moreover, as it is pointed out by Ang and
Piazzesi [1], a proper risk premium definition - notably time varying - permits
to reject the Expectation Hypothesis test and improves out-of-sample forecasts.

This article has been partly inspired with Diebold, Piazzesi and Rudebush
work [10], who have the first been interested in a no-arbitrage Nelson and Siegel
representation. I will follow them regarding the way of imposing no-arbitrage
conditions. I look under which conditions an affine factor term structure model
may admit a Nelson and Siegel representation. By construction the factor term
structure model is arbitrage free, and thus the Nelson and Siegel expression too.
Diebold, Piazzesi and Rudebush look at a simple case with only two independent
factors. I complete their approach with first a complete derivation of the no-
arbitrage Nelson and Siegel representation and second empirical comparisons
with standard representation.

I estimate both models on Fama-Bliss dataset. It contains the US monthly
zero-coupon prices from January 1952 to December 1998. I use the six following
maturities: 3, 6, 12, 24, 60 and 120 months.

I have chosen to use Kalman filter techniques to estimate the likelihood
of models. I then maximize this likelihood through optimization techniques:
Berndt-Hall-Hall-Hausman algorithm and Levenberg-Marquardt algorithms. This
technique provides an interesting trade-off between the cross sectional and the
times series constraints. One has indeed to keep in mind that at each period,
the model has to fit the yield curve, i.e. the six yields of the dataset, whose
maturities vary between 3 months and 10 years. To my mind, my choice avoids
notably to suppose that certain yields are priced without errors on the whole
sample, which is for example the case in the Chen and Scott [5] estimation
method. The choice of these perfectly measured yields may influence the para-
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meters estimation and I do not know any simple criteria which can select them.
On the contrary, with the Kalman filter, all yields are supposed to be priced
with errors. The first explanation for them is simply the fact that zero-coupon
yields are not directly the prices of market assets but are extracted from various
bond prices.

After the estimation of both models, I compare them and I focus especially on
the following aspects: share of term structure variance explained for different
horizons, rejection of the expectation hypothesis and out-of-sample forecasts.
Globally, the no-arbitrage Nelson and Siegel model performs significantly better
than the standard one, although both are as tractable as each other. Let us
look more at results into details. I can regroup my models comparisons in three
fields: practical one, financial and finally economic ones.

From a practical point of view, the estimation of the no-arbitrage model is
not significantly more complex than the standard Nelson and Siegel one. In
fact, even if supplementary terms are necessary for imposing no-arbitrage con-
straints, the number of free parameters is in both models strictly identical. I
address through these specifications the lack of parsimony which is one of the
usual drawbacks of factor term structure. Moreover, one can use in both mod-
els the same estimation methods with very few modifications. Empirical costs
(including computational and tractability ones) are in both models analogous.
Finally, no-arbitrage becomes a supplementary channel to understand the func-
tional forms chosen for Nelson and Siegel models by Diebold and Li [9], or its 4
and 5 factors extensions by Björk and Christensen [3].

From a financial point of view, the no-arbitrage model exhibits, as the stan-
dard version, a very good fit on yield curves. The bonds pricing errors are
indeed very low and are, on average, about 10 basis points for a given maturity.
Because yield curve fitting is a central feature of standard Nelson and Siegel
models, it is crucial that imposing no-arbitrage constraints does not deter it.
In the no-arbitrage Nelson and Siegel, the explicit definition of a risk neutral
measure allows moreover to investigate the pricing of interest rates derivatives
(e.g. caps, floorsĚ), which is not possible through the standard version.

From an economic point of view, the standard interpretation of factors in
terms of level and slope is still robust with no-arbitrage. The explicit defin-
ition of the term structure risk premium allows us to investigate the market
expectations for various maturities across time. For instance, whereas the port-
folio optimization (and especially the duration choice) in a standard Nelson and
Siegel rely on unknown term structure risk premium, the no-arbitrage version
allows a proper job.

I perform several tests to asses the preceding affirmations. One of the stan-
dard tests for measuring the accuracy of the risk premium consists in testing
the rejection of the expectation hypothesis. Under this hypothesis, the excess
return of a zero-coupon yield of maturity n at time t is an unbiased predictor
of yields variations between t and t+1. The regression of yield variation on
corresponding excess returns should lead to a unity coefficient. In fact, empirics
reveals that this coefficient is always negative and decreasing with maturity (at
least on US data). In order to avoid small sample biases, I do not only perform
this test on in ample modeled yields. I use Monte Carlo simulations to gen-
erate 1000 paths with both models. Each of them is a time series, containing
as many yield curves as the original dataset. I therefore test if the model with
its coefficients estimated through maximum likelihood is able to reject properly
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the expectation hypothesis. As a result, I find that my no-arbitrage Nelson and
Siegel model performs better than the standard one. The explicit time-varying
risk premium improves therefore the standard Nelson and Siegel model.

I am also interested in the variance decomposition to compare both models
performances in forecasting variances at different horizons. Whatever the hori-
zon (and even for the unconditional variance, implying an infinite horizon), the
no-arbitrage model performs better than the standard one. The share of resid-
ual variance, i.e. unexplained variance, is always smaller in my model. One can
also gauge the respective impact of both factors in the variance forecast. The
longer the horizon, the more important the level. On the other side, the slope
factor accounts more for the short-term of the curve.

The last point I look at is the out-of-sample forecast performances of both
models. I use the random walk as a benchmark. Duffee [12] reports indeed that
factor term structure models do not easily beat the random walk. I compute
one-month forecast for the last sixty months of the sample. For a forecast at
date t, I estimate each model on data until t-1, which implies 60 calibrations.
I compare then this forecast to the actual yield using two criteria: the mean
absolute deviation and the root mean squared error. For all maturities, my no-
arbitrage model outperforms the Nelson and Siegel one and the random walk.
As reported by Ang and Piazzesi, the explicit definition of a time-varying risk
premium is of great help in this achievement. My model also offers two other
channels to understand this performance. First, it remains as parsimonious
as the standard Nelson and Siegel one. This is one of the usual reproaches
addressed to factor term structure models when they perform poorly in out-of-
sample forecast. Second, The level factor of my model is constrained to be a
random walk under the risk neutral measure. If the RW had beaten my model,
it would have meant that adding a risk premium and a second factor would have
been useless in improving the forecast performance.

To conclude with, I propose a model with no-arbitrage and a Nelson and
Siegel representation. The usual advantages of Nelson and Siegel are not affected
with no-arbitrage constraints. My model fits the yield curve as well as the
standard Nelson and Siegel and is as tractable and as parsimonious . Moreover,
it outperforms significantly in the rejection of the expectation hypothesis and
the out-of-sample forecast. The first point is particularly important for portfolio
management (for assets or debt) by understanding market expectations, whereas
the second one is of major interest in monetary policy.

In the rest of the article, we note N&S the standard Nelson and Siegel
representation and NA–N&S the no–arbitrage one.

2 A two factors approach

We begin with a two factors approach. Two reasons motivate this choice. As
said in the introduction, the first one is to continue the work of Diebold, Piazzesi
and Rudebush [10]. The second one is to give in a simple framework, the no–
arbitrage Nelson and Siegel representation.

Let us precise the background, i.e. the factor term structure model and the
Nelson and Siegel one.
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2.1 Factor Term Structure model

We modify slightly Diebold, Piazzesi and Rudebush framework to make it com-
patible with Dai and Singleton classification [7]. If we use their notations, we
consider a A0(2) model. It is moreover a little simplified because we do not take
into account crossed terms in the factors dynamics.

We suppose that the short rate is the sum of two Ornstein Ühlenbeck processes,
whose dynamics under the historical probability P is:

rt = x
(1)
t + x

(2)
t (2.1)

dx
(i)
t = −κ̃i x

(i)
t dt + σidW̃

(i)
t i = 1, 2 (2.2)

The price of a zero–coupon issued in time t and maturating τ periods later
is noted P (FTSM)(t, τ) and is equal to the expectation under the risk–neutral
measure Q of the stochastic discount factor exp(−

∫ t+τ

t
rsds).

Let us note µt the associated market risk premium. It means that Wt =
W̃t−µt is a Brownian motion under the risk neutral measure Q (under regularity
conditions regarding Λt). According to the affine term structure literature, we
suppose that this risk premium is affine: µt = µ0 + µ1Xt. For a simplification
purpose (and in line with Diebold, Piazzesi and Rudebush paper), we suppose
that µ1 is diagonal. We do not allow crossed interactions for the risk premium.

Under the risk neutral measure, the dynamics of factors x
(i)
t is the following:

dx
(i)
t = (µ(i)

0 − (κ̃i − µ
(i)
1 )x

(i)
t )dt + σidW

(i)
t i = 1, 2

We define from now on κi = κ̃i − µ
(i)
1 , which is the mean reverting speed

under the risk neutral measure.
Using standard calculus, we can derive the price of a zero–coupon issued in

time t and maturating τ years later and noted P (FTSM)(t, τ).

P (FTSM)(t, τ) = exp
(
A(τ) + B(τ)Xt

)
(2.3)

Since Duffie and Kan [13], we know that the coefficients A(τ) and B(τ)
are defined through the two following ODE with boundary conditions A(0) =
B1(0) = B2(0) = 0. After some calculation, we can show that the derivatives of
both coefficients are equal to:

B′
i(τ) = −e−κiτ Bi(τ) =

e−κiτ − 1
κi

A′(τ) =
2∑

i=1

[
µ

(i)
0 Bi(τ) +

σ2
i

2
Bi(τ)2

] (2.4)

As we will see it, we do not need the complete analytical expression of A to
compute the no–arbitrage Nelson and Siegel representation.

2.2 Nelson and Siegel representation

The Nelson & Siegel model [17] provides a very simple expression for the zero–
coupon yields. In line with the factor term structure model, we are only inter-
ested in a two–factors model. The expression of a zero coupon yield y(NS)(t, τ)
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at time t and maturating at date t + τ is the following:

y(NS)(t, τ) = f
(1)
t + f

(2)
t

1− exp(−λτ)
λτ

(2.5)

The zero–coupon yield is expressed as the weighted sum of two factors f (i).
The first weight(≡ 1) is usually interpreted as the level of the yield curve. The
first factor f (1) affects all maturities (at a given time t) in an uniform way. A
modification in this factor translates identically the whole curve.

The second one (≡ 1− exp(−λτ)
λτ

) is interpreted as the slope. This weight
decreases with maturity and its limits in 0 and ∞ are respectively 1 and 0. The
factor f (2) affects thus more the short end of the curve than the long end.

3 Nelson and Siegel representation of a factor
term structure model

In this section, we want to find a Nelson and Siegel representation of the factor
term structure model which is described in the preceding section. We expose
here a general method which can be applied to a more sophisticated framework
(e.g. as we will do in the three factors case) . We could however apply a more
straightforward calculus in this simple context.

We want to find functional coefficients
{

f
(1)
t , f

(2)
t , f

(3)
t

∣∣∣ t ≥ 0
}

such that
prices of the zero coupon with the factor term structure model and the Nelson
and Siegel one are the same. Using the equations (2.3) and (2.5), the problem is
summarized in the following equality (we suppose that κ1 and κ2 are not equal
to 0) :

τ y(NS)(t, τ) + A(τ) + B(τ)> Xt = 0 (3.1)

Because we cannot explicitly compute the coefficient A(τ), we focus on the
derivation of the equalities (3.1) relative to τ , which is much more tractable. If
we use equations (2.4) and (2.5), the derivation of (3.1) leads to the following
equality:

0 = f
(1)
t −

(
µ

(1)
0

κ1
+

µ
(2)
0

κ2

)
+

σ2
1

2κ2
1

+
σ2

2

2κ2
2

(3.2)

+e−λτf
(2)
t +

2∑
i=1

e−κiτ

(
µ

(i)
0

κi
− σ2

i

κ2
i

− x
(i)
t

)
+

2∑
i=1

e−2κiτ
σ2

i

2κ2
i

We now want to identify coefficients to get the no–arbitrage Nelson and Siegel
representation. We distinguish two cases regarding the number of terms in the
Nelson & Siegel representation. In the first case, we constraint our model to take
into account only models with a constant term (≡ 1) and an exponential one

(≡ 1− exp(−λτ)
λτ

). Unfortunately, those representations always lead to trivial
term structures. Obviously we cannot consider them as satisfying term structure
modeling. To cope with this issue, we must add terms to catch properly no–
arbitrage conditions. As we will see it, our results will be in line with the five
factors extension of standard N&S representation by Björk and Christensen [3].

Let us begin with a strict two factors N&S representation.
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3.1 A strict two–factors Nelson & Siegel representation

We now want to identify factors f (i) in the equation (3.2) without adding any
term. We can firstly notice that if real coefficients

(
ai

)
i=1...n

are different by
pairs, the family

(
eai
)
i=1...n

is independent. The identification process is thus
very easy. We need however to distinguish cases regarding the value of κi and
λ. We suppose that λ is strictly positive.

(i) κi, 2κi, λ different by pairs. The independence of exponential functions
implies that factors x

(i)
t are equal to 0 and that the term structure is flat

and equal to x
(1)
0 + x

(2)
0 .

(ii) 2κi = λ The process x
(i)
t is necessarily equal to 0. The yield curve is again

constant.

(iii) κi = 0. The equation (3.2) is not more valid but (2.4) is still. A straight-
forward calculus shows that we need again to have x

(i)
t ≡ 0. The term

structure is again constant.

(iv) κi = λ. In this first case, the process x
(i)
t is determinist (σi = 0). More

precisely, we get the following result:

x
(i)
t = x

(i)
0 + µ

(i)
0 t

f
(1)
t =

µ
(1)
0 + µ(2)

λ

f
(2)
t =

2∑
i=1

(
x

(i)
t − µ

(i)
0

λ

)

Even if the term structure is not more constant over time, this case re-
mains undoubtedly uninteresting. The zero–coupon yield curve is still
completely determinist and therefore useless for financial and economic
purposes.

The restriction to a simple two factors representation always leads to poor
term structures. These are in the best configuration determinist and even often
constant. The factor term structure model is degenerated and is out of purpose.
As a consequence, we cannot properly take into account no–arbitrage constraints
in a simple two–factors N&S representation. We need to add terms, which
will help to overcome preceding drawbacks. Those terms aim at avoiding zero
identification. As we will see it, those terms have already been introduced by
Björk and Christensen [3] in their 5 factors N&S extension.

3.2 An extended N&S representation

3.2.1 Motivations

As we explained in the preceding paragraph, we wish we got a no–arbitrage
N&S representation, which won’t be simply determinist or even worse constant.
This goal cannot be reached with a simple two factors N&S model, as described
in equation (2.5). To cope with this issue, we can consider supplementary terms
in our initial representation. Considering the equation (3.2) and the calculus
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done in the preceding paragraph, we need terms in e−2λτ , τ and τ2 for the
identification of the equality (3.2) . This implies notably terms in 1−e−2λτ

2λτ , τ
and τ2 in the original Nelson & Siegel equation (2.5). These belong exactly to
the terms chosen by Björk and Christensen [3] in their extension.

With this new terms, the extended Nelson & Siegel representation becomes
now:

y
(τ)
t = f

(1)
t +

1− e−λτ

λτ
f

(2)
t +

1− e−2 λτ

2 λτ
f

(3)
t + τ f

(4)
t + τ2 f

(5)
t (3.3)

Aruoba, Diebold and Rudebusch [11] explain that these factors do not im-
prove the calibration on zero–coupon yield curves. Our estimations will not
infirm this point. However, as we will see it, they will be of great help in the
risk premium modeling and in the Expectation Hypothesis rejection. Those
terms do not improve the yield fit (but do not deter it neither) but help the
model to pass other important tests. For example, the risk premium modeling
(and the rejection of the Expectation Hypothesis) is crucial to compare portfolio
strategies. The use of a standard N&S seems to be of poor help in this purpose,
whereas no–arbitrage one becomes meaningful.

3.2.2 Factors expressions

We investigate the computation of factors f (i). We need to modify the equation
(3.2) to take into account our supplementary terms. For sake of precision, we
consider in our expression the possibility that κi = 0. In this case, the equations
(2.4) are not more valid, since we have Bi(τ) = −τ . We note 1A the function
equal to 1 if the event A is true and 0 else.

We can now generalize the equation (3.2) as follows:


f

(1)
t

f
(2)
t

f
(3)
t

f
(4)
t

f
(5)
t




1
e−λτ

e−2λτ

τ
τ2

 =
2∑

i=1


1

e−κiτ

e−2κiτ

τ
τ2

 .



[
µ

(i)
0
κi
− σ2

i

2κ2
i

]
1κi 6=0 + x

(i)
t 1κi=0

−
[

µ
(i)
0
κi
− σ2

i

κ2
i
− x

(i)
t

]
1κi 6=0

− σ2
i

2κ2
i
1κi 6=0

µ
(i)
0
2 1κi=0

−σ2
i

6 1κi=0


(3.4)

This is the complete system of equations defining the no–arbitrage N&S
representation. Because we assume that λ > 0, we only have three possibilities
to conclude (out of which two are symmetric): κ1 = κ2 = λ ; κ1 = 0 and κ2 = λ
and vice–versa.
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A one–factor model First, we can choose κ1 = κ2 = λ, which leads to the
following Nelson and Siegel factors:

f
(1)
t =

µ
(1)
0 + µ

(2)
0

λ
− σ2

1 + σ2
2

2λ2

f
(2)
t = x

(1)
t + x

(2)
t +

σ2
1 + σ2

2

λ2
− µ

(1)
0 + µ

(2)
0

λ

f
(3)
t = − σ2

1 + σ2
2

2λ2

f
(4)
t = 0

We only add a supplementary term in the N&S representation, whose weight

is 1−e−2λτ

2λτ . Moreover, the factor (≡ − σ2
1 + σ2

2

2λ2
) is constant overtime. The two

factors driving the term structure remain x
(1)
t and x

(2)
t . However, both of them

affects only the slope weight. This model is equivalent to a one–factor model.
We lose the dependency in one factor (the level is constant) and the richness
of the yield patterns are affected. This model is simply a version of classical
Vasicek model [18].

We can indeed set µ(0) = µ
(0)
1 + µ

(0)
2 , σ2 = σ2

1 + σ2
2 . Then xt = x

(1)
t + x

(2)
t is

an Ornstein–Ülhenbeck process1 with volatility σ, mean µ and mean reverting
speed λ.

A two–factors model Second, as in Diebold, Piazzesi and Rudebusch, we
choose that κ1 = 0 and κ2 = λ (the vice versa choice would of course have been
completely equivalent). In this case we get an extended five–factors extension
of the standard N&S. None of weights is equal to 0.

This case is more satisfying than the preceding one because it allows to deal
not only with a single parameter but with two independent parameters. The
factor x(1) drives the level and the factor x(2) the slope. Consequently, we have
been able to get a no–arbitrage N&S representation for a two–factors model.
This representation is empirically comparable to the standard N&S version and
we will do it in the next section.

To sum up in a couple of equations this new representation, we present the
factors dynamics (under the historical probability) and the coefficients f (i):

f
(1)
t = x

(1)
t − σ2

2

2λ2
+ µ

(0)
2
λ

dx
(1)
t = −µ

(1)
1 x

(1)
t dt + σ1dW̃

(1)
t f

(2)
t = x

(2)
t +

σ2
2

λ2
− µ

(0)
2
λ

dx
(2)
t = −(µ(1)

2 + λ)x
(2)
t dt + σ2dW̃

(2)
t f

(3)
t = − σ2

2

2λ2

f
(4)
t =

µ
(0)
1

2
f

(5)
t = − σ2

1

6

(3.5)

1Whose associated BM is σ1q
σ2
1+σ2

2

W
(1)
t + σ2q

σ2
1+σ2

2

W
(2)
t .
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Interpretation We want to understand to what extend no–arbitrage modifies
the N&S representation. For sake of simplicity let us write the expression of
a zero–coupon yield y(NANS)(t, τ) of maturity τ at time t according to both
representations.

y(NANS)(t, τ) =



1

1−e−λτ

λτ

1−e−2λτ

2λτ

τ2



>



− σ2
2

2λ2

σ2
2

λ2

− σ2
2

2λ2

− σ2
1

6


+


1

1−e−λτ

λτ

τ


>


µ
(0)
2
λ

−µ
(0)
2
λ

µ
(0)
1

2



+
[

1
1−e−λτ

λτ

]> [
x

(1)
t

x
(2)
t

]
(3.6)

y(NS)(t, τ) =

 1

1−e−λτ

λτ

>  θ1

θ2

+
[

1
1−e−λτ

λτ

]> [
x

(1)
t

x
(2)
t

]
(3.7)

Before any interpretation, one has to keep in mind that dynamics of x(i) is
different in each case. In the no–arbitrage model, the level factor is a random
walk under the risk neutral measure. The slope one is a mean reverting process
toward 0 and with mean reverting speed λ (always under the risk neutral mea-
sure), the same as for the weight terms in exponential. We can notice that in
this representation, the convergence speed toward the long term value of the
weight and the associated factor (considered under the risk neutral measure)
are equal. The level weight (1) and its factor (RW) both have 0 mean reverting
speed. For slope, λ is the common value. In the standard N&S model, both
factors are also mean reverting processes (under the historical probability, be-
cause we do not take care of the risk neutral one.) toward 0 but without any
constraint on the mean reverting speed.

The expression (3.6) is the sum of three different terms. The last one is
analogous to the standard Nelson and Siegel one in (3.7) and refers to the level
and slope of the yield curve. It is the only term depending on date t through the
channel of processes x(i). The main difference with standard expression consists
in the dynamics of processes under the risk neutral probability.

The other terms in (3.6) and (3.7) do not depend on time t and deform the
yield curve in an uniform way, independently of time. In the standard model,
this deformation is simply bivariate and consists in the sum of a constant de-
formation (θ1) of the level and another constant one (θ2) for the slope. Unfor-
tunately, we can hardly go further in the interpretation. In the no–arbitrage
representation, two terms deform uniformly the yield curve, independently of
the time t. The first one is a Jensen term whereas the second one reflects the con-
stant part of the risk premium and thus proportional to µ(0). This zero–coupon
yield expression offers consequently a straightforward economic interpretation.
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In the estimation section, we will compare impacts of different terms on the
yield curve deformation.

4 Empirical Estimations

We want to measure how the no–arbitrage conditions modify the modeling of the
yield curve with Nelson and Siegel factors. We want to investigate this question
regarding first the yield curve fitting, the modeling of the risk premium and the
forecast performance of each model. We need estimating properly both models.

For the data, we use Fama and Bliss discount factors, i.e. monthly nominal
zero coupon prices from June 30, 1952 to December 31, 1998 with maturities of
3, 6, 12, 24, 60 and 120 months.

For the estimation we do not follow Chen and Scott technique [5] but we use
instead Kalman filter and maximum likelihood estimation. This was also the
choice of Dai and Philippon[6]. Let us briefly call back the main reasons of our
choice.

In the Chen and Scott technique, one needs to assume that certain yields are
perfectly priced and do not suffer on the whole sample from any measurement
error. Using these yields, you can compute the dynamics of your latent factors.
Assuming then that other yields are priced with IID errors, you can compute
the likelihood and, through maximization, estimate parameters. The main is-
sue of this technique lies in the selection of perfectly priced yields. Up to my
knowledge, there is no criteria to select them, except the feeling of the author.

That is why we have decided to use maximum likelihood with Kalman fil-
ter. We suppose that all yields are priced with IID errors. The selection issue
disappears. This technique allows therefore a more natural trade–off between
times–series properties of factors (i.e. x

(i)
t ) and the cross sectional fit of differ-

ent maturities. We describe in details the estimation procedure for the stan-
dard representation. The technique is absolutely analogous in the no–arbitrage
framework.

4.1 Standard N & S model

We describe our estimation technique for the standard N&S model.
Let us begin with some notations and definitions. τ1, . . . , τN are the maturi-

ties available in our dataset, i.e. 3, 6, 12, 24, 60 and 120 months, meaning that
N = 6. Y (NS)(t) is the vector gathering zero–coupon yields of different maturi-
ties. We note εt the 6×1 vector of yields measurement errors, whose covariance
matrix Σ2

ε = diag(s2
1, s

2
2, s

2
3, s

2
4, s

2
5, s

2
6) is supposed to be diagonal. X

(NS)
t is the

vector of factors. We therefore suppose that shocks affecting various maturities
are independent. One of the justifications behind this is that main causes of
shocks are a priori independent. First, zero–coupon yields comes from inter-
polation of traded bond yields . Second, this errors can also be considered as
a tool to overcome the preceding selection problem. This can be done with
independent shocks.

For estimation purpose, we discretize the dynamics. ηt is the 2× 1 vector of
shocks affecting both factors. We assume that the variance matrix is diagonal
and equal to diag(σ2

1 , σ2
2). This in line with the assumption telling that both

factors are independent.
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The factors mean reverting matrix Λ = diag(1− κ1, 1− κ2) is diagonal. We
note B the N × 2 matrix of factors weights and equal to

[
1 1−e−λτi

λτi

]
i=1...N

.

Finally, A is the constant term deforming the yield curve: B [θ1 θ2].
The set of parameters we need to estimate in this model is the following one:

Θ(NS) = {λ, κ1, κ2, θ1, θ2, σ1, σ2, s1, s2, s3, s4, s5, s6}.
With those notations, the state–space system expresses as follows:

Y
(NS)
t = A(NS) + B(NS) X

(NS)
t + ε

(NS)
t (4.1)

X
(NS)
t = Λ(NS) X

(NS)
t−1 + η

(NS)
t (4.2)

(4.3)

We use the Kalman filter techniques to compute the best forecast Yt+1|t
of Yt+1 at time t in function of factors Xt. We can therefore determine the
distribution of Yt+1|t knowing Xt. By recursion, we can then compute the total
likelihood. You can find in appendix all the related technical stuff.

The estimation of the likelihood is performed through two algorithms: (i)
Berndt–Hall–Hall–Hausman algorithm [2] and (ii) Levenberg–Marquardt algo-
rithms [14] and [15]. Both are combined to modify traditional Newton–Raphson
algorithms. The first one uses the equality, for the likelihood function, between
the Hessian matrix and the opposite of the gradient covariance matrix. The
equality is not valid for all values of parameters but only at the equilibrium
value and we get then the Fisher information. This algorithm tells that this
property remains true for values not too far from the equilibrium and that
through a Newton–Raphson algorithm we converge toward the true value. The
second algorithm modifies the step between each recursion of the numerical al-
gorithm. Instead of simply subtracting the product of the Hessian inverse and
the gradient, we multiply it with a constant so as to maximize the likelihood at
this recursion step.

Precisions regarding the numerical techniques in the appendix ?
The table (Tab. 1) gathers estimation results for the parameters values

and associated standard errors. Our estimation performs well and all coefficients
are accurately estimated. Standard errors remain weak and all parameters are
significant.

4.2 No–arbitrage N & S model

The estimation procedure is absolutely identical to the preceding one. In fact,
we need very few modifications to take into account no–arbitrage constraints.
Looking at zero–coupon yields expressions (3.5) and factors dynamics (3.6), it
is rather intuitive to modify the standard N&S estimation equations and get the
following state–space system:

Y
(NANS)
t = A(NANS) + B(NANS) X

(NANS)
t + ε

(NANS)
t (4.4)

X
(NANS)
t = Λ(NANS) X

(NANS)
t−1 + η

(NANS)
t (4.5)

(4.6)

As you can notice it, the structure of both estimations is identical and differ-
ences are thin. Computational costs as well as conceptual ones are in both cases
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Parameters Values×10−2 Standard Errors×10−5

s1 0.439 0.123
s2 0.204 0.067
s3 0.048 0.051
s4 0.106 0.027
s5 0.043 0.058
s6 0.183 0.052
λ 5.618 0.527
κ1 1.025 3.833
κ2 5.722 7.965
θ1 7.241 13.316
θ2 -1.276 4.197
σ1 0.342 0.073
σ2 0.564 0.084
ML 37273 0.015

Table 1: Estimation of the standard Nelson and Siegel model

of comparable magnitude. The set of parameters we need to estimate is now the
following: Θ(NANS) = {λ, σ1, σ2, µ

(0)
1 , µ

(0)
2 , µ

(1)
1 , µ

(1)
2 , s1, s2, s3, s4, s5, s6}. We

can notice that in no–arbitrage case the number of parameters to estimate is
strictly equal to the one in standard N&S model. The no–arbitrage conditions
allow us to decrease the number of parameters of the factors term structure
model and make it compatible with the one of the standard Nelson and Siegel
model. Both models are equally parsimonious, which cancels out one of the
traditional drawbacks of factor term structure models.

As in the preceding case, we compute recursively the likelihood and its max-
imization leads to the estimations gathered in table (Tab. 2) . As in the
standard model estimation, all the parameters are significant.

Parameters Values×10−2 Standard Errors×10−5

s1 0.439 0.137
s2 0.210 0.063
s3 0.008 0.797
s4 0.128 0.034
s5 0.103 0.045
s6 0.137 0.056
λ 4.480 0.508
σ1 0.235 0.056
σ2 0.775 0.042
µ

(0)
1 0.045 0.508

µ
(0)
2 0.046 0.015

µ
(1)
1 0.708 0.345

µ
(1)
2 1.421 2.290

ML 37287 0.000

Table 2: Estimation of the no–arbitrage N&S model
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We can notice that the maximum likelihood is greater in the no–arbitrage
case than in the standard one, while the number of estimated parameters is the
same.

4.3 Comparisons of both models

We want to compare both preceding models in terms of bond pricing and of risk
premium modeling. The number of parameters is the same in both models and
the likelihood is greater for the no–arbitrage representation. We expect therefore
the no–arbitrage model to perform better than the standard one, especially what
concerns the risk premium modeling and long maturities (notably because of
Jensen terms and risk premium definition).

4.3.1 Yield curve fitting

The following table (Tab. 3) gathers spreads between effective rates and real
yields. The differences are expressed in basis points (bp = 0.01%). In paren-
theses, you can find standard errors coming from the estimation uncertainties.

Spreads between model and reality (bp)
Maturity N&S model NA–N&S model

3 43.44 43.68
(0.0052) (0.0098)

6 19.67 20.91
(0.0041) (0.0042)

12 2.21 0.01
(0.0057) (0.0048)

24 10.18 12.56
(0.0010) (0.0031)

60 1.93 8.60
(0.0064) (0.0057)

120 17.57 11.19
(0.0048) (0.0073)

Mean 15.84 16.16

Table 3: Spreads between modeled and actual yields

Both models perform in a similar way and differences between both model-
ings are in terms of yields modeling not really significant. On average, these are
about 0.3 bp.

One of the major advantage of standard Nelson and Siegel model is to fit
particularly well the yield curve. We can notice that the no–arbitrage property
does not deter this positive feature.

4.3.2 Variance decomposition

We strengthen this affirmation by comparing the shares of yield variances ex-
plained by factors of each model at a given horizon. The table (Tab. 4) gathers
results. For each model and for each maturity, we express which share of the
total zero–coupon yield variance is explained by the first factor, by the second
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one and which share remains unexplained. One can find in appendix the proper
derivations for variances decompositions.

As we can see in the results array, the proportion of yield curve variance
explained by the no–arbitrage model is always greater than the one explained
by the standard representation. The maturity forecast does not influence this
feature. We can also notice that the explanatory power of both models increases
with forecast maturities in comparable proportions. The share of unexplained
variances sinks from 8.08% for the NA–N&S model (resp. 10.96% for the stan-
dard N&S model) for a one month forecast down to 0.48% for a 10 years forecast
(resp. 0.62%) and even 0.21% (resp. 0.59%) for a very long forecast, which is
in fact the unconditional variance.

Let us look more into details. The explanatory power varies a lot regarding
the considered yield. Models perform better for the long end of curve and
especially the middle end, which means maturities between 1 year and 5 years.
The average unexplained variance is 0.64% for the NA–N&S model (resp. 0.44%
for the standard one), whereas for the remaining of the yield curve, which is the
short end and the long end, this share is 3.63% (resp. 5.25%). The standard
N&S model does slightly better than the no–arbitrage one for the middle end
(especially for 2 years maturity) of the curve but the margin is very thin.

For both models, the 3 months zero–coupon yield is much less explained
than the other ones. The unexplained variance is as high as 6.60% (9.01% for
the standard N&S) for 3 months yields, whereas the average for other yields is
not larger than 1.24% (resp. 1.61%). Explanatory power of both models is less
for the short end (3 months and six months zero–coupon) of the yield curve,
but the no–arbitrage model does better than the standard one. The 10 years
zero–coupon yield is more interesting. For the standard N&S, it is the second
worst maturity, just after the 3 months one. For the no–arbitrage model, the
result is more moderated. For short forecasts (1 and 12 months in particular),
the 10 years residual variance is greater than the 6 months one but for longer
forecasts (typically longer than 5 years), the result is inverted. The no–arbitrage
as well as Jensen terms help to improve the explanatory power for long forecast
and long maturities.

Let us now focus on the role of both factors. The explanatory power of the
first factor (interpreted as the level of the yield curve) increases with the forecast
maturity from on average 14.8% (resp. 38.91%) on the yield curve for the no–
arbitrage (resp. standard) N&S model for a one month forecast to 84.63% (resp.
78.13%) for unconditional variance. On the other side, the explanatory power
of the second factor (i.e. the slope) decreases with the forecast maturities from
77.12% (resp. 50.42%) down to 15.16% (resp. 21.29%). The slope accounts more
for explaining short term forecasts whether the level has a more important role
on longer forecasts.

Globally, for a given forecast horizon, the explanatory power of the level
increases with yield maturity whereas this of the slope decreases. For instance,
let us consider the unconditional variance. For the no–arbitrage (resp. standard)
N&S, the level explanation goes up from 77.55% (resp. 67.01%) for 3 months
yields up to 94.68% (resp. 92.62%) for 10 years yields. On the other hand, the
one of the slope sinks from 21.61% (resp. 30.74%) down to 5.22% (resp. 6.84%).
On the whole, level is important to explain long–term forecast and to explain
long–end of the yield curve. On the contrary, slope is important to explain
short forecast and to explain short–end of the yield curve. We need however
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Shares of yield variances
NA–N&S Standard N&S

Maturity First Second Unexp. First Second Unexp.
(months) factor factor factor factor
1 month
forecast

3 6.81 69.40 23.79 19.40 48.59 32.01
6 8.81 84.12 7.06 27.27 63.00 9.74
12 10.62 89.38 0.00 33.34 66.00 0.66
24 12.56 83.73 3.71 38.59 57.67 3.74
60 20.14 75.99 3.87 55.69 43.42 0.88
120 29.85 60.12 10.04 59.17 23.86 16.97

Mean 14.80 77.12 8.08 38.91 50.42 10.67
12 months
forecast

3 14.11 81.72 4.18 36.47 57.93 5.60
6 15.40 83.56 1.05 40.02 58.65 1.33
12 17.28 82.72 0.00 44.29 55.62 0.08
24 20.76 78.72 0.52 51.10 48.44 0.46
60 31.63 67.85 0.52 66.84 33.06 0.10
120 46.00 52.69 1.31 77.97 19.94 2.08

Mean 24.20 74.54 1.26 52.78 45.61 1.61
60 months
forecast

3 37.20 60.43 2.37 59.01 38.19 2.79
6 39.42 60.00 0.58 62.22 37.14 0.64
12 42.69 57.31 0.00 66.13 33.83 0.04
24 48.34 51.40 0.26 72.00 27.80 0.20
60 62.30 37.48 0.22 83.20 16.76 0.04
120 75.34 24.20 0.46 89.89 9.37 0.74

Mean 50.88 48.47 0.65 72.08 27.18 0.74
120 months

forecast
3 51.98 46.21 1.81 65.02 32.60 2.38
6 54.32 45.25 0.43 68.00 31.46 0.54
12 57.64 42.36 0.00 71.59 28.38 0.03
24 63.10 36.72 0.19 76.84 22.99 0.17
60 75.12 24.73 0.14 86.47 13.50 0.03
120 84.81 14.91 0.28 91.99 7.43 0.59

Mean 64.50 35.03 0.48 76.65 22.73 0.62
∞
3 77.55 21.61 0.85 67.01 30.74 2.25
6 79.14 20.66 0.20 69.91 29.58 0.51
12 81.28 18.72 0.00 73.37 26.61 0.03
24 84.51 15.41 0.08 78.39 21.46 0.15
60 90.60 9.35 0.05 87.48 12.49 0.03
120 94.68 5.22 0.10 92.62 6.84 0.54

Mean 84.63 15.16 0.21 78.13 21.29 0.59

Table 4: Shares of variances
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to be more cautious when explaining the role of the level, especially for short
forecasts, because its explanatory power (for both models) is hump–shaped. For
short forecasts, the slope explains more the middle–end of the curve than the
short–end. These values correspond also to high unexplained variance shares,
meaning that there is a lack in models for short term explanation of the short–
end of the yield curve. Because it is a common feature to both models, we can
assume that the reason of it is either the lack of a third factor (i.e. curvature) or
of crossed terms in factors dynamics. My intuition is the lack of a third factor.

Let us now look into the modeling of the risk premium.

4.3.3 Comparison of risk premium modeling

After the comparison of the yield curve modeling, we want to show which spec-
ification leads to a proper risk premium. Therefore, we will focus on the Expec-
tation Hypothesis test, as done for example in Campbell and Shiller [4] or Dai
and Singleton [8].

We will run the following regressions for all n ∈ {6, 12, 24, 60, 120}:

y
(n−3)
t+1 − y

(n)
t = an + bn

y
(n)
t − y

(3)
t

n− 3
+ εt (4.7)

Notice that n and t are expressed in months and that the minimum maturity
we have in our dataset is 3 months.

We use the estimation procedure described in Dai and Singleton [8]. This in-
vestigation method for the Expectation Hypothesis tests if the model parameters
(estimated through ML) themselves gender the correct pattern for the regres-
sion coefficient bn. In fact, we do not want to test if the in–sample estimated
yields exhibit this property. We therefore use Monte–Carlo simulations. For
each model, we generate 1000 scenarii. Each of them is a path of zero–coupon
yields simulated by the model. As in our sample (going from 1952, January to
1998, December), each path has 444 yields. Then we run our regression for each
path and compute average and standard errors for each coefficient.

This coefficient must be in line with Campbell and Shiller [4] results. It
should be always negative and should exhibit a downward sloping pattern with
maturities.

As we can see in the table (Tab. 5) , both models perform this test relatively
well. Both exhibit a negative and downward sloping pattern. The implicit risk
premium modeling in the standard Nelson and Siegel representation is therefore
not too bad. However, the modeling of the no–arbitrage one is significantly
better than the standard one, for all maturities and especially for long ones (3,
5 and 10 years). the difference between both models increases with maturity.
The longer the maturity, the better the no–arbitrage N&S model relative to the
standard one.

The explicit risk premium modeling is therefore better than the implicit
one, even if we restrict to our particular case of a linear risk premium. The
graph (Fig. 4.1) plots regression coefficients of (4.7) with their respective 95%
confidence intervals (dashed lines). It illustrates to which extend no–arbitrage
representation performs better than the standard one.

From a heuristic point of view, the actual regression coefficients almost lie
inside the 95% confidence interval of the no–arbitrage model. On the other
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Expectation Hypothesis Regressions
Maturity Data Standard N&S NA–N&S

6 -2.81 -0.57 -0.67
(0.19) (0.25)

12 -4.97 -1.18 -2.20
(0.50) (0.71)

24 -9.56 -5.22 -7.30
(0.89) (0.86)

60 -22.83 -17.34 -22.24
(1.51) (1.16)

120 -24.91 -18.16 -22.67
(1.50) (1.04)

Table 5: Expectation Hypothesis Regressions

Figure 4.1: Regression coefficients (4.7) of Vs. maturities
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side, confidence intervals of standard N&S and no–arbitrage one have a very
thin intersection. If not a test, this illustrates how well the no–arbitrage model
help to perform the rejection of the Expectation Hypothesis, espicially for long
maturities.

4.3.4 Detailed comparisons of both representations

We want to understand what are the differences between both representations.
We will begin with comparing the dynamics of both factors and then the impact
of Jensen and constant risk premium terms as defined in expression (3.6).

For reading convenience, we sum up relevant expressions in both cases:

y(NANS)(t, τ) =



1

1−e−λτ

λτ

1−e−2λτ

2λτ

τ2



>

.



− σ2
2

2λ2

σ2
2

λ2

− σ2
2

2λ2

− σ2
1

6


+
[

1
1−e−λτ

λτ

]> [
x

(1)
t

x
(2)
t

]

+
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1

1−e−λτ

λτ

τ
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>

.



µ
(0)
2
λ

−µ
(0)
2
λ

µ
(0)
1

2


(4.8)

X
(NANS)
t = Λ(NANS) X

(NANS)
t−1 + η

(NANS)
t (4.9)

y(NS)(t, τ) =
[

1
1−e−λτ

λτ

]> [
θ1

θ2

]
+
[

1
1−e−λτ

λτ

]> [
x

(1)
t

x
(2)
t

]
X

(NS)
t = Λ(NS) X

(NS)
t−1 + η

(NS)
t (4.10)

Factors dynamics: We compare factors dynamics in both representations,
notably mean reverting speeds and standard errors. We begin with the mean
reverting speeds, i.e. the diagonal terms of (I2 − Λ(NS)) and (I2 − Λ(NANS)).

Mean reverting speeds (×10−2)
Standard N&S No–arbitrage N&S

First factor 1.021 0.620
×10−5 (5.627) (2.831)

Second factor 5.633 5.481
×10−5 (11.696) (20.753)

(4.11)

In both cases, the first factor is the most persistent one but it is more per-
sistent in the no–arbitrage case. On the other side, mean reverting speeds of
the second factor are of comparable magnitude in each representation.
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Let us now turn to the volatilities of factors shocks.

Factors Volatilities (×10−3)
Standard N&S No–arbitrage N&S

First factor 3.417 2.338
×10−5 (0.107) (0.061)

Second factor 5.637 7.678
×10−5 (0.123) (0.222)

(4.12)

Factor volatilities are of the same order of magnitude in both cases. The
first factor is less volatile in the no–arbitrage model whereas it is the opposite
for the second factor.

If not equal, factors dynamics are comparable. As we can read in the table
(Tab. 6) , the financial interpretation of these factors in both representations
is completely analogous. The correlation of first factors with the level factor
(expressed as the long term zero–coupon rate, i.e. the 10Y in our case) is very
high, even greater than 99%. Regarding second factors, the correlation with the
level factor (expressed as the difference between the short rate, 3 months rate
and the long rate, 10Y rate) is also very high in both cases, that is greater than
96%.

Correlations (%)
Standard N&S No–arbitrage N&S

Level and first factor 99.45 99.18
Slope and second factor 96.46 96.04

Table 6: Correlations between models factors and yield curve moments

The no–arbitrage conditions does not deter significantly the economic inter-
pretation of factors. The usual meanings of level and slope remain strongly.

Constant terms in the zero–coupon yields For a description purpose, it is
useful to compare the constant terms in the standard N&S (i.e. terms depending
on θ?) and the no–arbitrage one (i.e. Jensen terms and terms in µ

(0)
? ). Those

terms are independent of the date of the term structure. They only depend on
the maturity of the zero–coupon rate. The graph (Fig. 4.2) plots constant
terms (normalized at 0 for maturity 1 month) for both models.

Risk premium modeling and Jensen terms We chose to model a linear
risk premium depending on the factors Xt. We give its expression for reading
convenience: Λt = µ(0) + µ(1)Xt. The two factors of the risk premium present
patterns which are very similar to the level and slope of the term structure. The
correlation between the level and the first factor of the risk premium is 99.21%
and the correlation between slope and second factor is 95.75%. We interpret it
as follows. Each component of the risk premium reflects a risk which is linked
either to the level or to the slope. Our definition of the risk premium allows us
to separate the risk lying of the level and the one on the slope. The level risk
premium varies between 4.5 and 6.5 bp with a mean od 5.4 bp. The slope risk
premium varies between -2 and 14 bp. Figures (Fig. 4.3) plot the evolution
of these risk premia across time.
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Figure 4.2: Constant terms in both models

Figure 4.3: Risk premium components
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5 Forecast performance

In this section, we want to investigate the out–of–sample performance of our
models. We compute one–month forecast for the last 60 months. The procedure
is the following. We estimate both models on a given sample and then compute
the one month out–of–sample forecast for the 6 yields of our dataset (from 3
to 120 months). Then we compute the difference between the forecasts and
the actual yields. Two criteria finally allow us to measure the performance
of forecasts. Those criteria are the Root Mean Squared Error (RMSE) and
the Mean Absolute Deviation (MAD). Those criteria are computed for the 6
maturities of our dataset. If we note ŷ(t, τ) the model forecast of zero–coupon
yield at time t and of maturity τ noted y(t, τ), the expression of both criteria
for a given maturity τ is (T is the last date in our dataset):

MAD(τ) =
1
60

T∑
t=T−59

∣∣ŷ(t, τ)− y(t, τ)
∣∣ (5.1)

RMSE(τ) =

√√√√ 1
60

T∑
t=T−59

(
ŷ(t, τ)− y(t, τ)

)2 (5.2)

Looking at equations (5.1) and (5.2), we can understand that the smaller
the criteria, the better the forecast performance of the model.

Duffee [12] explains that factor term structure models do not easily perform
better than random walks in yields forecasting. The random walk performance
will be used as a benchmark.

As we can see in table (Tab. 7) , the no–arbitrage N&S model performs
better than the random walk and than the standard N&S.

Forecast Performances (×10−3)
MAD criteria RMSE criteria

Maturity RW NA–N&S NS RW NA–N&S NS
3 1.3532 1.2091 1.2102 1.8605 1.5854 1.6054
6 1.4265 1.3016 1.3149 1.9353 1.6595 1.6841
12 1.9860 1.8664 1.8815 2.5391 2.3506 2.3710
24 2.2433 2.1459 2.1619 2.8232 2.6956 2.7140
60 2.3105 2.2646 2.2703 2.8744 2.8240 2.8345
120 2.0973 2.0772 2.0812 2.6290 2.6129 2.6165

Table 7: Forecast performances of both models

Three reasons may explain this success in the out–of–sample forecast. First,
as pointed out by Duffee, a time–varying risk premium, similar to ours, is of
great help in forecasting performance. The explicit no–arbitrage constraints are
useful in improving the forecast performance of the model. Second, our model
offers a very interesting channel to understand how it helps to beat the random
walk forecast. The random walk is in fact a polar case of our no–arbitrage N&S
representation. It is the first factor of our model in the risk neutral world. If the
RW had beaten our model, it would have meant that adding a risk premium and
a second factor would have been useless in improving the forecast performance.
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Finally, our no–arbitrage model remains parsimonious, which avoids one of the
traditional drawbacks of affine term structure models. The large number of
parameters in those kinds of models is sometimes evoked to explain their failure
relative to more parsimonious ones. Our no–arbitrage N&S model can indeed
be also seen as a constrained factor term structure model.

It seems that all constrains we have incorporated in our model: no–arbitrage
ones and Nelson & Siegel ones, help to improve the out–of–sample forecast
performance.

6 Conclusion

This article provides a simple model which is close to standard N&S repre-
sentation and which allows no–arbitrage cross–sectional restrictions. The main
difference with an unconstrained factor term structure model is the factors risk–
neutral dynamics. The mean reverting speeds must indeed verify several equal-
ities to allow a N&S representation. The main difference with a standard N&S
model are the Jensen terms (time series constant terms), whose expression is
constrained with no–arbitrage.

In the appendix2, we derive more general conditions under which a factor
term structure model admit a N&S representation. Without going deep in
technical details, these conditions depend first on the factors volatility structure3

and on the factors mean reverting speeds.
We have empirically estimated the no–arbitrage model and the standard

N&S one using Kalman filter equations and maximum likelihood. It is before
all important to notice that both models exactly have the same number of pa-
rameters and that the estimation technique is analogous. Both representations
are therefore as parsimonious as each other. The comparison between both
reveals that the no–arbitrage version performs better than the standard one,
except for yield curve fitting, where results are comparable. The main successes
of the no–arbitrage model are related to its proper definition for the risk pre-
mium, which means the rejection of the Expectation Hypothesis and performing
out–of–sample forecast.

It would have been interesting to make this comparisons in a more general
framework: general two factors model (with crossed factors) or even three fac-
tors model. One has however to keep in mind that analytical simplicity would
strongly decrease.

Redo estimations for a general 2 factors model ? 3 factors model ?

2 Not yet available.
3More precisely, our results depend strongly on the parameter used by Dai and Singleton

in their classification, the rank of the ‘stochastic’ part of volatility.
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Appendix

A Variance decomposition

In this section we derive explicit expressions for the variances decompositions.
Suppose that we have the following state system (with obvious notations):

Yt = A + BXt + εt

Xt = ΛXt−1 + ηt

We suppose that all eigenvalues of Λ lie in the unit circle4. We can write the
following MA(∞) representation for Yt:

Yt = A +
∞∑

k=0

BΛkηt−k + εt

The error between the forecast Ŷt+h|t at date t of Y at horizon h > 0 and
effective Yt+h is therefore:

Yt+h − Ŷt+h|t =
h−1∑
k=0

BΛkηt+h−k + εt+h (A.1)

Our both models shared some common features. Λ is 2×2 diagonal matrix,
B is identical, ηt+h−k and εt+h are independent and have diagonal covariance
matrices. With obvious notations, the expression of the mean square error
MSEj for the component j is the following:

MSEj(h) = E
[
(Y j

t+h − Ŷ j
t+h|t)

2
]

=

[
h−1∑
k=0

l2k
1

]
σ2

1

+

[
h−1∑
k=0

l2k
2

]
σ2

2

[
1− e−λτj

λτj

]2
+ s2

j

We can then compute the variance share of yield j at horizon h explained
by the first factor ωj

1(h), by the second factor ωj
1(h) and the residual ωj

r(h):

ωj
1(h) =

1− l2h
1

1− l21

σ2
1

MSEj(h)

ωj
2(h) =

1− l2h
2

1− l22

σ2
2

MSEj(h)

[
1− e−λτj

λτj

]2

ωj
r(h) =

s2
j

MSEj(h)

With h →∞, we get the unconditional variance decomposition.

4This assumption is true for our both models, the standard one and the no–arbitrage one.
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B Kalman filtering and ML estimation

This section refers to the ML estimation using Kalman filter estimations. Sup-
pose that the state–space system has the following expression:

Yt = A + B Xt + εt (B.1)
Xt = Λ Xt + ηt (B.2)

We suppose that the perturbations εt and ηt are independent of each other
and of the initial state X0. Their respective variance matrices are Σε and Ση.

The standard Kalman filter update equations provide us the expression of
the forecasts X̂t+1|t of the state process Xt and associated mean squared errors
Pt+1|t:

X̂t+1|t = ΛX̂t|t−1 + ΛPt|t−1B
>(BPt|t−1B

> + Σε

)−1(Yt −A−BX̂t|t−1)

Pt+1|t = Λ
[
Pt|t−1 − Pt|t−1B

>(BPt|t−1B
> + Σε

)−1
BPt|t−1

]
Λ′ + Ση

Regarding the initial conditions, the do not have any problem for X1|0, which
is the best forecast at date 0 of X1. This is simply the unconditional mean of
X, which is stationary under the historical probability P.

X1|0 = EP [X] (B.3)

Because the process X are stationary5, the initial mean squared error is
defined as follows:

vec(P1|0) =
(
Ir2 − Λ⊗ Λ

)−1
vec(Ση) (B.4)

In the preceding equation, r is the number of components of X (= 2), ⊗ is
the Kronecker product, and vec(M) is the vector representation of the matrix
M6.

We can now remark that the distribution of Yt knowing It (representing the
information available at time t) is the following:

Yt

∣∣It  N
(
A + BX̂t+1|t, BPt+1|tB

> + Σε

)
(B.5)

We can compute easily the log likelihood L corresponding to the observation
Ỹtk

. Θ is the set of parameters we have to estimate.

LỸtk
(Θ) = −1

2
[
ln(2π) + ln

(
det(BPt+1|tB

> + Σε)
)

(B.6)

+(Ỹtk
− (Aµ + BX̂t+1|t))>(BPt+1|tB

> + Σε)−1 × (Ỹtk
− (A + BX̂t+1|t))

]
We can therefore compute the likelihood recursively and then maximize it

relative to Θ.

5At least under the historical probability and that what is here of interest.
6If M = (mij)i=1...n,j=1...p then vec(M) = [m11 m21 . . . mn1m12 . . . mnp]>
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