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1. Introduction
The paper attempts an integration of size distribution theory and the theory

of economic growth; in the present case we restrict the analysis to neoclassical
models of growth, with exogeneity of savings behaviour. The paper considers
the interdependence of the evolution of the size distribution of wealth with the
factor distribution of income. Models of wealth distribution have the most part
(see literature review) assumed exogeneity of the factor prices which determine
the behaviour of the individual agents (whether such be families or individ-
ual persons) which constitute the distribution. Evolution of the distribution
to its equilibrium (if it exists) is therefore conditioned by ¯xity of what might
be termed the macroparameters in this connection. On the hand, models of
economic growth, whether they be the earlier neoclassical models of growth,
or the more recent developments of endogenous growth theory, focus attention
on the behaviour of aggregate quantities with little if any discussion of the
microfoundations underlying such aggregates. It is true of course that repre-
sentative individuals are constructed which appear to give greater credence to
such modelling; but such "creatures" in general are modelled in relation to ag-
gregate quantities, or are presumed to re°ect cross sectional attributes of the
population.

In essence the problem of integrating distributional and growth model lies
in recognizing the appropriate aggregator relations that are required for the
construct of macrorelationships. It may turn out, of course, that for certain
types of microbehaviour, macromodels which focus on what might be termed
¯rst moment relations, are reasonably accurate, but without investigation we
cannot be certain whether they correctly model the relevant aspects of the
economy. Likewise models of distributional behaviour, which incorporate stable
macroparameters which may be in°uenced by the evolution of the distribution,
may be criticised on grounds of consistency, if the evolution of the distribution
is inconsistent with long run macro stability.

(to be completed, Literature Review)

2. The Basic Model
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The basic model we shall consider is one in which individual agents die
and may leave property to more than one successor agent. We leave open the
question of whether the individual agent is to be viewed as a single person or
group of individuals, the family. The model at this stage is su±ciently general to
allow a number of interpretations as regards the agent. For pedagogic purposes
the reader may assume individual agents are individual persons, and successors
to this person are 'children'.

This model will allow us to consider a number of applications, in particular
the e®ects of inheritance taxation, as well as wealth and income taxes on the
distribution. For simplicity we initially assume that there is no dispersion with
respect to the representative individual agent's saving; this assumption will be
dropped in a subsequent section. The model may therefore be speci¯ed as
follows:

(a) The Representative Individual Agent
The income of the agent is assumed to consist of a wage component, the same

for all agents, and an interest component-linearly dependent on the amount of
wealth owned by the family. We assume a proportional savings function, savings
being added to the individual's wealth stock, of which there is no depreciation.
Thus we have,

dk
dt

= s(p + rk) = g(k) (1)

where p = the wage income, r =the rate of interest,k =the individual's wealth,
and s the savings propensity, 0 < s < 1.

(b) The Demographic Assumptions and the Distribution Equation
We assume that families steadily accumulate property according to equation

(1); in addition we introduce a simple demographic assumption that within a
given time period a proportion of families who have a given amount of wealth,
cease to exist; each family's wealth is then shared equally between n succes-
sor families, which previously did not exist. This assumption is subsequently
modi¯ed below.

The equation governing the frequency distribution of wealth is then shown
in the Appendix to be,

@h(k; t)
@t

= ¡g(k)
@h(k; t)

@k
¡ (gk(k) + ¸)h(k; t) + ¸n2h(nk; t) (2)

where,
h(k; t) denotes the number of families owning wealth k at time t
¸ denotes the proportion of families which become extinct in each period
n denotes the number of successor families.

(c) The Macroeconomic Dimension
The model remains incomplete until we specify the time paths of wages and

the interest rate. The simplest assumption is to specify p(t) and r(t) directly as
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functions of time; which would include the standard constancy case. This can
be an admissible procedure, if, e.g. in the constant case we were interested in
the distribution which corresponded to a macroeconomic steady state. However,
a steady state may not exist, or we may need to prove existence, on which case
we need to consider the dependency of the macroparameters on the evolution
of the distribution function.

Let Y (t) denote the total income of the community, ¯ is de¯ned as the
proportion of income which goes in interest payments, and the remainder (1 ¡
¯)Y (t) of income is given to families in the form of wage payments. ¯ is assumed
to be constant over time. Let K(t) be the total capital of the community, and
L(t) the total Labour supply. We assume that each family provides one unit of
Labour supply, independent of the wage and family wealth.

The rate of interest is given by,

r(t) = ¯
Y (t)
K(t)

(3)

and the wage rate by,

p(t) = (1 ¡ ¯)
Y (t)
L(t)

(4)

K(t) and L(t) are determined by the relations,

L(t) =
Z k=1

k=0
h(k; t)dk (5)

K(t) =
Z k=1

k=0
kh(k; t)dk (6)

i.e. labour is simply the sum of the unit supplies with respect to the number
of families in the distribution; whilst aggregate capital is the sum of families
wealth.

This still leaves aggregate income undetermined. We shall assume that a
relationship exists between aggregate income, and aggregate capital and labour,

Y (t) = F (K(t); L(t)) (7)

which we particularize to the Cobb-Douglas form for some of our analytic results.
A word may be expressed, on the simpli¯cations adopted. As we shall see

the assumptions have been standardised to form a connection with standard
neoclassical growth theory. Important modi¯cations may relate to at least two
dimensions. Firstly, the responsiveness of Labour supply to the wage rate, and
the way this manifests itself according to the di®erent characteristics of families.
Thus the average wage component may systematically deviate across wealth
categories, both according to the wage paid, and the heterogeneity of families
with respect to their labour supply and other characteristics. The important
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aspect here is whether the wage component to families should systematically
vary with wealth, and the functional form this should take. As we see below,
alternative functional forms for the wage component may be adopted, although
analytic solution in such cases may be problematic.

3. Solution of the Basic Model
We may collect the above equations to give the following basic model,

@h(k; t)
@t

= ¡g(k)
@h(k; t)

@k
¡ (gk(k) + ¸)h(k; t) + ¸n2h(nk; t) (8)

dk
dt

= s(p + rk) = g(k) (9)

p(t) = (1 ¡ ¯)
Y (t)
L(t)

; r(t) = ¯
Y (t)
K(t)

(10)

K(t) =
Z k=1

k=0
kh(k; t)dk; L(t) =

Z k=1

k=0
h(k; t)dk (11)

Y (t) = F (K(t); L(t)) (12)

The di±culty in solving such a system even for this simple case is that in (8)
to (12we have a mixed di®erence-di®erential equation, the coe±cients of which,
through the in°uence of r and p are themselves functions of the distribution
h(k; t), thus making the equation non-linear. The approach to the solution
of this system we adopt relies on the choice of a suitable integral transform
procedure.

We take the moment or Mellin transform of h(k; t) de¯ned by,

M(h(k; t)) = M(m; t) =
Z k=1

k=0
kmh(k; t)dk (13)

We may note that M(0; t) = L(t), and M(1; t) = K(t). Transforming the
system with the Mellin transform, we have,

dM(s; t)
dt

= spmM(m ¡ 1; t) + (srm ¡ ¸ + ¸n1¡m)M(m; t) (14)

p(t) = (1 ¡ ¯)
Y (t)

M(0; t)
; r(t) = ¯

Y (t)
M(1; t)

(15)

Y (t) = F (M(1; t); M(0; t)) = M(1; t)°M(0; t)1¡° (16)

First we may solve for the time paths of L(t) and K(t); with these determined
the paths of Y (t), and then p(t) and r(t) can be determined from equations (15)-
(16).
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Letting m = 0 in equation (14) we have,

dM(0; t)
dt

= ¸(n ¡ 1)M(0; t) (17)

Thus,
M(0; t) = M(0;0)e¸(n¡1)t (18)

i.e. the number of families grows at the exponential rate ¸(n ¡ 1) determined
solely by the number of families leaving the distribution in each period, together
with the number of net family replacements.

Letting m = 1 in (14) we have,

dM(1; t)
dt

= srM(1; t) + spM(0; t) (19)

Now from (15)-(16),

r(t) = ¯[
M(1; t)
M(0; t)

]°¡1 (20)

and,

p(t) = (1 ¡ ¯)[
M(1; t)
M(0; t)

]° (21)

Thus subst. these values for r and p in (19) and then (18) in (19) we have,

dM(1; t)
dt

= sM(1; t)°M(0;0)1¡°e¸(n¡1)(1¡°)t (22)

The solution of (22) is,

M(1; t)1¡° =
s

¸(n ¡ 1)
M(0; 0)1¡° [e¸(n¡1)(1¡°)t ¡ 1] + M(1;0)1¡° (23)

Thus collecting the results we have the solution for the evolution of the macropa-
rameters as,

L(t) = L(0)e¸(n¡1)t (24)

K(t)1¡° =
s

¸(n ¡ 1)
L(0)1¡°(e¸(n¡1)(1¡°)t ¡ 1) + K(0)1¡° (25)

[
K(t)
L(t)

]1¡° =
s

¸(n ¡ 1)
L(0)1¡°(1 ¡ e¡¸(n¡1)(1¡°)t) + [

K(0)
L(0)

]1¡°e¡¸(n¡1)(1¡°)t

(26)

r(t) = ¯[
s

¸(n ¡ 1)
(1 ¡ e¡¸(n¡1)(1¡°)t) + [

K(0)
L(0)

]1¡°e¡¸(n¡1)(1¡°)t]¡1 (27)

p(t) = (1¡¯)[
s

¸(n ¡ 1)
(1¡e¡¸(n¡1)(1¡°)t)+[

K(0)
L(0)

]1¡°e¡¸(n¡1)(1¡°)t]
°

1¡° (28)
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These results should of course appear familiar, indeed the equation for the
evolution of the ¯rst moment may be put in a more recognizable form if we work
with the normalized moment,

m(1; t) =
M(1; t)
M(0; t)

(29)

Since,
dm(1; t)

dt
=

1
M(0; t)

dM(1; t)
dt

¡
M(1; t)
M(0; t)2

dM(0; t)
dt

(30)

then subst. (17) and (19) in (30) we have,

dm(1; t)
dt

= sm(1; t)° ¡ ¸(n ¡ 1)m(1; t) (31)

i.e. the Solow(1956) growth equation where m(1; t) = k(t) = K(t)=L(t).
We may note that to derive equations referring to the evolution of the ¯rst

two moments of the density function, h(k; t), i.e. L(t) and K(t), there is strictly
no need to use the distribution equation (8) or (14) at all. We might have in-
ferred from our basic demographic assumption that the time path of population
would be L(t) = L(0)e¸(n¡1)t, which always holds however complex the other
elements of the basic model become. The time path of K(t) can be derived
directly from equation (9) by multiplying the R.H.S. by h(k; t) and integrating
over k, and equating the L.H.S. with dK(t)=dt. This equation alone su±ces to
determine the time path of K(t) since the linear system is moment separable, i.e.
the evolution of the ¯rst moment K(t) does not depend on higher moments of
the distribution as a result of the linear savings function. Naturally we may only
dispense with (8) or (14) for the ¯rst two moments; to determine the evolution
of the higher moments the distribution equation is a necessity.

The equations for the higher moments may be derived from (14), letting n
take on integer values, and after substituting in the values of r(t) and p(t) from
(27), (28). Two approaches to the solution of these equations for the higher
moments are evident. From equations (26)-(29) (and from our prior knowledge
of the Solow equation) we note that although the ¯rst two moments of the
distribution function do not approach limiting values, their ratio does, as do the
values of r(t) and p(t). These limiting values are obtained irrespective of the
values taken by the other moments of the distribution, and also irrespective of
the initial distribution, at t = 0, of individuals over wealth ranges. The simplest
approach is thus to assume that su±cient time has elapsed to ensure that there
is macroeconomic equilibrium, that is m(1; t), r(t) and p(t) are constant at their
equilibrium values, i.e.,

m(1; t) = [
s

¸(n ¡ 1)
]

1
1¡° (32)

r(t) = ¯
¸(n ¡ 1)

s
= r¤ (33)
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p(t) = (1 ¡ ¯)[
s

¸(n ¡ 1)
]

°
1¡° = p¤ (34)

and thence subst. these relations directly into equation (14) and solve for the
higher moments. The alternative is to substitute the time dependent relations
(27) and (28) into (14) and then solve. This approach however leads to much
additional work without commensurate gain or clarity as regards the solution
to the problem. We therefore consider the moment solution where r(t) and p(t)
are constant at their equilibrium values. Note that this solution is di®erent from
that adopted by assuming r and p were exogenously given. We have here shown
that p and r tend to equilibrium within the context of the distributional model.

For constant p and r we may solve equation by recursion (see Appendix).
The normalized moments are given by,

m(N; t) =
M(N; t)
M(0; t)

=
j=NX

j=1

Cj exp(cjt)

+
N !(sp)N

Qj=N
j=1 (dj)

(35)

where we de¯ne,
cj = srj ¡ ¸ + ¸n1¡j ¡ ¸(n ¡ 1) (36)

and,
dj = ¸(n ¡ 1) ¡ (sjr ¡ ¸ + ¸n1¡j) (37)

Whether stable values of the m(N; t) exist or not depends on the sign of the
term,

srj ¡ ¸ + ¸n1¡j ¡ ¸(n ¡ 1) (38)

For low values of j this may be negative, and thus we have stability, but
ultimately (38) will de¯nitely become positive as j takes on larger and larger
values. We thus have a solution for a limiting distribution in which the lower
moments of the distribution are stable whilst the higher moments are not.

Major interest centres around the change in the second normalized moment
and the variance. We have,

m(N; t) =
M(N; t)
M(0; t)

= C1 exp(sr¡¸(n¡1))t+C2 exp(2sr¡¸+¸n¡1¡¸(n¡1))t

+
2(sp)2

(¸(n ¡ 1) ¡ sr)(¸(n ¡ 1) ¡ 2sr ¡ ¸ + ¸n¡1)
(39)

Since we are in macro equilibrium, from (33),

sr = ¯¸(n ¡ 1) (40)

where of course, 0 < ¯ < 1:
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Thus the exponential associated with C1 tends to zero for large t; for a stable
variance we require that the exponential associated with C2 tends to zero.

Thus if,

2sr ¡ ¸n + ¸n¡1 = ¸(n ¡ 1)(2¯ ¡ (1=n) ¡ 1) > 0 (41)

then,
m(2; t) ! C2 exp(¸(n ¡ 1)(2¯ ¡ (1=n) ¡ 1)t) (42)

If,
¸(n ¡ 1)(2¯ ¡ (1=n) ¡ 1) < 0 (43)

then,

m(2; t) !
2(sp)2

(¸(n ¡ 1) ¡ sr)(¸(n ¡ 1)(1 + (1=n) ¡ 2¯)
(44)

Since we remember that ¯ is the share of national income that is paid out in
interest payments, and remembering that ¯ < 0:5 in most advanced capitalist
countries, investigation of the stable branch of m(2; t) is not wholly without
relevance. The term for the second moment may be considerably simpli¯ed by
substituting in the equilibrium values p¤ and r¤; we have,

m(2; t) !
2(1 ¡ ¯)

(1 + 1
n ¡ 2¯)

(k¤)2 (45)

where k¤ is the equilibrium value of mean wealth of the population de¯ned by
(32).

The variance of the equilibrium distribution of wealth is given by,

var(k) = m(2; t) ¡ m(1; t)2 =
(1 ¡ 1

n)
(1 + 1

n ¡ 2¯)
(k¤)2 (46)

The square of the coe±cient of variation has quite an interesting interpretation,
for large n, then we have,

(c:var)2 »
1

(1 ¡ ¯) ¡ ¯
(47)

i.e. it is equal to the reciprocal of the di®erence between the proportion of
national income going to wages and the proportion going to pro¯t.

With regard to comparative statics, we may consider the e®ects of changing
the share of pro¯t, and the number of children on the variance and coe±cient
of variation. We may note that whilst ¯ has no in°uence on the mean wealth,
due to the proportional nature of the savings function, it does have an e®ect on
the variance, i.e.,

@var(k)
@¯

=
2(1 ¡ 1

n )
(1 + 1

n ¡ 2¯)2
(k¤)2 > 0 (48)
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i.e. increasing the share of pro¯ts in national income increases the variance of
the steady state distribution. Ultimately, of course, as ¯ creeps upward, when it
passes 1

2 (1+ 1
n ) there is no stable variance. This result has a relatively straight-

forward explanation; according to our assumptions regarding savings behaviour,
if individuals did not die they would accumulate in¯nite wealth; the factor which
engenders stability to the distribution is death and the subdivision of wealth
amongst n heirs. Increasing the share of pro¯t has the e®ect of increasing the
incomes of those with relatively large amounts of wealth at the expense of those
whose incomes are derived principally from earnings. Di®erential accumulation
is thus altered in favour of individuals already high on the wealth scale, and
thus, as we should expect, the variance of the distribution will increase.

Consider now the e®ect of increasing the number of children, ¯rst on the
coe±cient of variation squared,

@(c:var:)2

@n
=

2(1 ¡ ¯)
n2(1 + 1

n ¡ 2¯)2
> 0 (49)

i.e. increasing the number of children increases the coe±cient of variation. This
may appear as a somewhat surprising result, since an increase in wealth splitting
may be expected to have the reverse e®ect. However endogeneity of the wage
and interest rate are factors producing this e®ect. As we see from equations
(33), (34) increasing the number of children has the e®ect of raising the rate of
interest and lowering the wage, and from (32) of decreasing mean wealth. Thus
although increasing the number of children born to each individual strengthens
the stabilizing factor, it also strengthens the dissipative factor by increasing the
rate of interest. As (49) shows with respect to the coe±cient of variation the
dissipative in°uence is the stronger.

What is the e®ect of n on the variance of the distribution ?

@(var(k))
@n

=
(1 ¡ 1

n )(2k¤)
(1 + 1

n ¡ 2¯)
@k¤

@n
+

@(c:var:)2

@n
(k¤)2 (50)

We thus have two contrary in°uences; the factor working to reduce the
variance is the change in mean wealth,

@k¤

@n
=

¡k¤

(1 ¡ °)(n ¡ 1)
< 0 (51)

whilst the change in the coe±cient of variation will serve to increase the variance.
Substituting (49) and (51) in (50) we have,

@(var(k))
@n

=
¡2(n(1 ¡ 2¯) + ¯ + °(1 ¡ ¯))

(1 + 1
n ¡ 2¯)2(1 ¡ °)n2 (k¤)2 (52)

and thus if ¯ < 0:5; then certainly,

@(var(k))
@n

< 0 (53)
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4. Wealth Shu²ing and Inequality
In the basic model we have assumed that heirs come into their inheritance

upon the donor's death; further that such heirs were previously penniless and
had not entered the wealth distribution h(k; t). We now wish to consider the
more general case in which individuals already occupy a position in the wealth
distribution before they inherit; furthermore we should also wish to take account
of the fact that wealth transfers may also take place during the lifetime of the
donor. In order to consider such possibilities we may modify the basic model
by the introduction of a wealth transfer or wealth shu²ing function.

Instead of the assumption that individuals leave the distribution with a
probability of ¸±t + o(±t) within the time interval ±t; let us now modify this to
the assumption that they simply jump wealth ranges with the same probabil-
ity. Concerning the length of the jump, we assume this to be de¯ned by the
conditional cumulative distribution function,

G(k; k¤) (54)

which de¯nes the proportion of individuals having terminal wealth less than
or equal to k, conditional on initial wealth being k¤: The associated frequency
distribution function , g(k; k¤) de¯nes the proportion of individuals initially
having wealth k¤ whose terminal wealth is k, i.e.,

G(k; k¤) =
Z x=k

x=kL

g(x; k¤)dx (55)

where kL denotes the lower wealth bound.
For those individuals who do not jump we maintain the assumption that

they continue to accumulate wealth according to the function g(:). The macro-
economic dimension of the model remains unchanged.

Now consider a small interval of time ±t; if the individual's wealth at the
end of the period is less than k then this could have come about in one of the
following, and mutually exclusive ways. Firstly, the individual's wealth at the
beginning of the interval (t; t + ±t) was less than k ¡ us±t and there was no
jump;secondly, the individual's wealth at the beginning of the period was k¤

and a jump equal to or less than (k ¡ k¤) has occurred.
We therefore have the following equation for the evolution of the wealth

distribution function,

F (k; t+±t) = (1¡¸±t)F (k¡us±t; t)+¸±t
Z

k¤

@F (k¤; t)
@k¤ G(k; k¤)dk¤+o(±t) (56)

i.e. the number of individuals having wealth less than or equal to k at time
(t + ±t) is equal to the numbers of individuals having less than or equal to
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k ¡ us±t at time t, who did not jump; plus the numbers who did jump, these
numbers being given by the individuals in various wealth changes, weighted by
the proportions in those ranges having a jump to range less than or equal to k
at time (t + ±t):

Expanding F(k; t + ±t); F(k ¡ us±t; t) in Taylor series about the point (k; t)
then dividing through (56) by ±t; and letting ±t ! 0; we arrive at the following
integro-di®erential equation governing the dynamics of the distribution function,

@F(k; t)
@t

= ¡us
@F(k; t)

@k
¡ ¸F(k; t) + ¸

Z

k¤

@F(k¤; t)
@k¤ G(k; k¤)dk¤ (57)

The integral in (57) is de¯ned with respect to initial wealth prior to the jump,
and the range of integration is over all permissible wealth values. Equation (57)
thus takes the pace of equation (2) of the basic model.

In order to arrive at analytical solutions, additional assumptions have to be
made with respect to the shu²e function G(k; k¤): We shall assume that the
distribution of jumps relative to initial wealth is the same for all values of initial
wealth, i.e. G(k; k¤) is of the form G(k=k¤): Di®erentiating (57) w.r.t k under
this assumption, we therefore have the equation,

@f(k; t)
@t

= ¡us
@f(k; t)

@k
¡ (

@us

@k
+ ¸)f(k; t) + ¸

Z

y
f(k=y; t)g(y)dy=y (58)

where y = k=k¤:
With us de¯ned by (1) we may take the moment transform of (58) to give,

dMf(q; t)
dt

= spqMf(q ¡ 1; t) + (srq ¡ ¸ + ¸Mg(q))Mf (q; t) (59)

where we de¯ne,

Mf(q; t) =
Z

k
kqf(k; t)dk (60)

Mg(q) =
Z q

y
yqg(y)dy (61)

i.e. the moment transforms with respect to the distribution of wealth, and the
jump function.

Before considering the solution of this model, let us consider the properties of
the moment transform of the shu²e function Mg(q). Mg(0) denotes the zero'th
moment of the shu²e function; if the numbers being shu²ed remain constant
then Mg(0) = 1: If we wish to introduce the possibility of population growth,
then Mg(0) has to exceed unity; hence in order to bring this formulation in line
with that of the basic model we shall assume Mg(0) = n > 1:

The appropriate value for Mg(1) can be seen from (59) with q = 1, i.e.,

dMf(1; t)
dt

= spMf(0; t) + (sr ¡ ¸ + ¸Mg(1))Mf (1; t) (62)
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If the shu²e function is truly to shu²e wealth, then wealth cannot be created
or destroyed by such a process; thus if an individual transfers wealth to other
individuals, the donor's wealth must diminish by the amount of the transfer.
Thus in order to maintain this wealth accounting identity, we must have the
restriction that Mg(1) = 1; as is apparent from (62). No a priori restrictions
are placed on the higher moments Mg(q); q ¸ 2:

Solving the system we note the macro-model gives identical results to the
basic model. The normalized moments are given by (35) with the cj now de¯ned
by,

cj = ¸(n ¡ 1) ¡ (sr¤j ¡ ¸ + ¸Mg(q)) (63)

Provided the stability conditions are satis¯ed, the steady state values of the
higher moments are given by (35) with the dj now de¯ned by,

dj = 1 ¡ °j + (1 ¡ Mg(j))=(n ¡ 1) (64)

and in particular the steady state variance,

var(k) =
n ¡ 2 + nmg(2)

n ¡ 2°(n ¡ 1) ¡ nmg(2)
(¹k¤)2 (65)

where mg(2) denotes the normalized second moment of the shu²e function
Mg(2)=Mg(1):

The minimum value of the variance of the shu²e function is, of course, zero;
this must therefore imply, at this minimum,

mg(2) = mg(1)2 (66)

But as we have seen, mg(1) = (1=n); thus the minimum value of mg(2) =
(1=n)2: Since @var(k)=@mg(2) > 0;this must therefore imply that the minimum
value of the distribution of wealth is reached when mg(2) = mg(1)2: Thus
we have the conclusion that whatever shu²e function we choose, subject to
the constraints noted on the zero'th and ¯rst moments, then the steady state
variance of the distribution of wealth cannot be below that generated by the
basic model.

An alternative viewpoint of the basic model is to view it as the particular
case of a shu²e function de¯ned by the Dirac delta function of the form,

g(k=k¤) = n±(1 ¡ (1=n)) (67)

If such a viewpoint is taken, then the basic model can also be interpreted in
terms of generalized gifts and inheritances, without necessarily assuming that
individuals only enter the distribution on receipt of their inheritance.

5. Inequalities in Savings and Incomes
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In the basic model the savings of the individual are known once the wealth
of the individual is known. We have further assumed that the wage income
and interest rate earned on wealth are identical for all individuals. A closer
approximation to reality would allow some dispersion in savings at each level
of wealth; such dispersion re°ecting inequalities in wage income at each wealth
level, di®erences in the rate of return on wealth, and variations in preferences
of individuals regarding choice between consumption and investment.

In relation to the basic model we retain the function form,

g(:) = s(p + rk) (68)

but now interpret s as the mean savings propensity; and p and r as the mean
wage and rate of return received in each wealth range.

We introduce a dispersion factor,

uss = ¾2k2; ¾ > 0 (69)

which describes the variability of savings around mean savings in each wealth
range.

The general equation governing the evolution of the distribution of wealth,
maintaining the other assumptions of the basic model, can be shown to be,

@f(k; t)
@t

= ¡
@
@k

(usf(k; t)) +
1
2

@2

@k2 (ussf(k; t)) ¡ ¸f(k; t) + ¸n2f(nk; t) (70)

Taking the moment transform of (70) and noting that,

M(k2 @2

@k2 (f(k; t)) = (q + 1)qM(q; t) (71)

we have,

dM(q; t)
dt

= spqM(q ¡ 1; t) + (srq ¡ ¸ + ¸n1¡q +
1
2
¾2q(q ¡ 1))M(q; t) (72)

which replaces equation (14) of the basic model; all other moment equations
remaining the same. Thus solving the system, we may again note that the
macro-model gives identical results to the basic model, consequent on the sym-
metrical nature of the savings function. All higher moments may be determined,
and provided the stability conditions are satis¯ed, the steady state values are
given by (35) with the dj now,

dj = 1 ¡ °j ¡ (
n1¡j ¡ 1

n ¡ 1
) ¡

1
2

¾2j(j ¡ 1))
¸(n ¡ 1)

(73)

The steady state variance can be shown to be,

var(k) =
1 ¡ (1=n) + ¾2

¸(n¡1)

1 + (1=n) ¡ 2°¤ (¹k¤)2 (74)
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where,

°¤ = (° +
1
2

¾2

¸(n ¡ 1)
(75)

Thus the implication of introducing a heteroscedastic disturbance term into
the speci¯cation of savings behaviour may be seen to change the de facto share
of income going to pro¯t, when judging the impact on the variance of the distri-
bution of wealth. Such an impact could have been surmised directly from () in
which the de facto interest rate can be seen to be raised by the factor 1

2
¾2(q¡1)

s .
The greater the dispersion in savings the greater the steady state variance of
the wealth distribution.

6. Non-Linear Savings Functions
The models considered in previous sections are linear in the sense that the

functions describing mean savings behaviour have been linear functions of mean
income and thus of wealth. The major implication of this linearity being that
the solution for any given moment of the size distribution can be determined
recursively in terms of the moments of lower order. As a result, we have seen
that the equation for the ¯rst moment evolution is synonymous with the fa-
miliar macrogrowth equation for capital accumulation, in which the change in
aggregate wealth is assumed to be independent of the variance or other higher
moments of the wealth distribution.

If non-linearities are introduced into the savings function, then the recursive
nature of the moment system may not be retained. For example, if the savings
function is quadratic in wealth, i.e.,

g(:) = a + bk + ck2 (76)

then the equation for the moments becomes,

dM(q; t)
dt

+aqM(q ¡1; t)+ bqM(q; t)+cqM(q +1; t)+¸(n1¡q ¡1)M(q; t) (77)

where we retain the basic model assumptions regarding inheritance. It can be
seen that knowledge of at least the variance of the distribution of wealth will be
required before we can solve the equation for the evolution of aggregate wealth;
whilst knowledge of the evolution of the variance will require knowledge of the
third moment, etc. Such systems generate growth models of the economy which
are of an exotic nature, and do not form part of the Parthenon of neoclassical
growth theory, and therefore are not considered further in this paper. It can of
course be argued that the case where g(:) is a function of k to a power greater
than unity is not likely to re°ect any known cross sectional data, and therefore
not likely to be of great practical import; at least where g(:) is required to be a
continuous function over all possible values of wealth.
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We shall however consider the case where g(:) depends on wealth with an
exponent of less than unity; in this case the moment system is solvable by
recursive techniques. As a particular example we consider the case where the
logarithm of income is assumed to be linearly dependent on the logarithm of
the wealth of the individual, with elasticity coe±cient a < 1, i.e.

y = Bka (78)

Further we assume that savings are proportional to income, and so,

g(:) = sBka (79)

We may note that a savings function of this form was proposed by Clower and
Johnson(19**), on the basis of a one period utility maximization model in which
utility was a function of both consumption and wealth. The function has also
been ¯tted to Swedish data with some success by Naslund and Sellstedt(19**)
the elasticity coe±cient turning out to be of the magnitude 0:3.

The equation governing the distribution of wealth becomes,

@f(k; t)
@t

= ¡sBk
@
@k

(f(k; t)) ¡ (asBka¡1 + ¸)f(k; t) + ¸n2f(nk; t) (80)

where again the inheritance assumptions of the basic model are retained.
Taking the moment transform of (80) we have,

dM(q; t)
dt

= sBqM(q + a ¡ 1; t) ¡ (¸ + n1¡q))M(q; t) (81)

Rede¯ning q as q = q¤(1¡a); (81) may be solved recursively, letting q¤ take
the values, q¤ = 1; :::::; N; to give,

j=NY

j=1

(D + ¸(1 ¡ n1¡j(1¡a)))M(N(1 ¡ a); t) = N !(sB(1 ¡ a))NM(0; t) (82)

which may be solved to give, in terms of the normalised "non-integer" moments,

m(N(1 ¡ a); t) =
M(N(1 ¡ a); t)

M(0; t)
= m(N(1 ¡ a); t) =

j=NX

j=1

Aj exp((n¡j(1¡a) ¡ 1)¸nt(83)

+(
sB(1 ¡ a)

¸n
)NN !(

j=NY

j=1

(1 ¡ n¡j(1¡a)))¡1

where the Aj are the arbitrary constants determined by the initial distribution
of wealth.
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Since n¡j(1¡a) < 1 for j ¸ 1; then m(N(1¡ a); t) converges to the last term
of (83) for all N , and hence we have a limiting stable distribution. Note that
for N = 1, the equation implicitly de¯nes as a special case the evolution of the
Atkinson inequality index (for a given a).

7. Unequal Inheritance and Di®erential Fertility
In the basic model we assumed that wealth was distributed equally amongst

n heirs; furthermore that every individual on death had the same number of
heirs. Both of these assumptions may be relaxed.

The assumption that wealth is distributed unequally amongst n heirs can be
considered as follows. Let wi be the share of the ith heir,

P
i wi = 1;0 · wi ·

1; all:i. The equation governing the distribution of wealth is now given by,

@f(k; t)
@t

= ¡s(p + rk)
@
@k

(f(k; t)) ¡ (¸ + sr)f(k; t) + ¸
i=nX

i=1

1
wi

f(
k
wi

; t) (84)

Taking the moment transform we have,

dM(q; t)
dt

= spqM(q ¡ 1; t) + (srq ¡ ¸ + ¸
i=nX

i=1

wq
i ))M(q; t) (85)

Thus solving the system we have identical solutions for q = 0; 1 as the basic
model. All higher moments may be determined, and provided the stability
conditions are satis¯ed, the steady state values are given by (35) with the dj
now,

dj = 1 ¡ °j + (1 ¡
i=nX

i=1

wj
i )=(n ¡ 1) (86)

In particular, the steady state variance is given by,

var(k) =
n ¡ 2 +

Pi=n
i=1 w2

i

n ¡ 2(n ¡ 1) ¡
Pi=n

i=1 w2
i

(¹k¤)2 (87)

Subject to the constraint on
Pi=n

i=1 wi;
Pi=n

i=1 wj
i attains its minimum value when

wi = (1=n); i.e. equal shares. Any movement of shares away from equal subdi-
vision can thus be seen to increase inequality as measured by the variance.

Concerning di®erential fertility, assume that the population is split into
M groups, indexed by m; the proportion of the population in each group is
vm; 0 · vm; · 1

P
m vm = 1: Within each group each donor splits wealth

equally between nm heirs.
The equation governing the distribution of wealth is now,

@f(k; t)
@t

= ¡s(p + rk)
@
@k

(f(k; t)) ¡ (¸ + sr)f(k; t) + ¸
i=nX

i=1

vmn2
mf(

k
wi

; t) (88)

17



Taking the moment transform we have,

dM(q; t)
dt

= spqM(q ¡ 1; t) + (srq ¡ ¸ + ¸
m=MX

m=1

vmn1¡q
m ))M(q; t) (89)

Solving the system again we note that the macro-model gives identical results
to the basic model. Provided the stability conditions are satis¯ed the steady
state values of the higher moments are given by (35) with the dj now de¯ned
by,

dj = 1 ¡ °j + (1 ¡
MX

m=1

vmn1¡j
m )=(n ¡ 1) (90)

In particular, the steady state variance is given by,

var(k) =
n ¡ 2 +

PM
m=1 vmn1¡j

m

n ¡ 2°(n ¡ 1) ¡
PM

m=1 vmn¡j
m

(¹k¤)2 (91)

Letting n denote the average number of heirs over all groups, i.e.
PM

m=1 vmnm =
n; then for ¯xed n,

PM
m=1 vmn¡1

m attains its minimum when nm = n all m. Thus
any movement towards di®erential fertility as between groups can be shown to
increase inequality when such is measured by the variance.

8. Individual and Distributional Stability
In the preceding section although there exists the possibility of stability for

the distribution, at least for the lower moments, there is no such stability for the
individual, who accumulates wealth steadily or dies, in which case the children
accumulate wealth starting with their inheritance, until they die, and so on. We
shall now change the savings function such that it admits the possibility of a
stable equilibrium for the individual.

The savings behaviour we introduce is the proportional savings function
modi¯ed by the addition of a 'depreciation ' term, i.e.,

g(k) =
dk
dt

= s(p + rk) ¡ µk; µ > 0 (92)

The term 'depreciation' should, of course, not be taken in the literal physical
sense. Meade(1964) speci¯es such a savings function, a priori, arguing that the
greater the wealth of the individual the less the individual needs to save, a
type of 'precautionary' wealth holding hypothesis. An alternative justi¯cation
for (92) is that the government has introduced a proportional tax on wealth at
the rate µ , the proceeds of which are entirely consumed by the government.
This would further entail the assumption that savings from pretax income are
totally una®ected by the tax, if s is presumed to take the same value as when
µ = 0: Analysis of the e®ects of taxation will be considered further below. With
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equation (92) replacing (1) in the basic model, proceeding in the manner as
above we can determine the solution for the Nth moment as,

M(N; t) =
j=NX

j=1

Cj exp((sr ¡ µ)j ¡ ¸ + ¸n1¡j)t

+
N !(sp)NM(0; 0) exp(¸(n ¡ 1)t)

Qj=N
j=1 (¸(n ¡ 1) ¡ ((sr ¡ µ)j ¡ ¸ + ¸n1¡j))

(93)

We note that sr ¡ µ < 0, is a necessary condition that all the moments
(except, of course, the zero'th, i.e. the population) converge to the second
expression of (93), but this condition is not necessary for some of the moments to
so converge. The condition sr ¡ µ < 0 also ensures the existence of a stationary
value for individual wealth, as may be seen from equation (93). Proceeding
in the manner as for the savings equation (1), we may show that the 'Solow'
equation regarding the evolution of the ¯rst normalized moment may be written
as,

dm(1; t)
dt

= sm(1; t)° ¡ (µ + ¸(n ¡ 1))m(1; t) (94)

Thus again we have stable values of m(1; t); r(t); p(t), which in the limit, as
t ! 1, have values given by,

m(1; t) = ¹k¤ = [
s

¸(n ¡ 1) + µ
]

1
1¡° (95)

r(t) = r¤ = ¯
(¸(n ¡ 1) + µ)

s
(96)

p(t) = p¤ = (1 ¡ ¯)[
s

¸(n ¡ 1) + µ
]

°
1¡° (97)

Note that it is possible for rs > µ and yet equations (95)-(97) still hold.
Thus we have the following possibilities,
(i) an equilibrium wealth solution for the individual exists, and thus equi-

librium for the normalized distribution.
(ii)no equilibrium for the individual and stable values for the lower moments

of the distribution. but not all.
(iii) no equilibrium for the individual or any stable moments.
In the case where individual equilibrium exists, all the normalized moments

of the distribution will tend to,

m(N; t) =
N !(sp)

Qj=N
j=1 (¸(n ¡ 1) ¡ ((sr ¡ µ)j ¡ ¸ + ¸n1¡j))

(98)

with p and r determined by (96) and (97).
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Of special interest is the stable variance. The condition for a stable second
normalised moment is,

2(sr ¡ µ) ¡ ¸ +
¸
n

¡ ¸(n ¡ 1) < 0 (99)

irrespective of whether sr ? µ, and the variance may be written as,

var(k) =
2(1 ¡ ¯)(¹k¤)2

1 + 1
n + µ(n¡1)

n(¸(n¡1)+µ) ¡ 2¯
¡ (¹k¤)2 (100)

It may be shown that,
dvar(k)

dk
< 0 (101)

i.e. increasing the 'tax rate' µ reduces the variance of the distribution.
We may note the special case where no individual dies, or what amounts to

the same thing that every individual has exactly one heir, i.e. ¸ = 0;or n = 1:
In this case we would expect all individuals whatever their initial wealth to
converge to the stationary point of wealth implied by equation (95), provided
sr < µ. The distribution function should thus become a Dirac delta function at
this point. Does our formal analysis con¯rm this intuitive result ?

Putting n = 1 in (98) we have,

m(N; t) =
N !(sp)N

Qj=N
j=1 (µ ¡ sr)j

= [
sp

(µ ¡ sr)
]N (102)

Now note the following result, if,

h¤(k; t) = ±(k ¡ k0) (103)

where ±(:) is the Dirac delta function and h(k; t) the normalized distribution;
then,

M(±(k ¡ k0); N) =
Z k=1

k=0
kN ±(k ¡ k0)dk = kN

0 (104)

Thus,
M¡1(m(N; t)) = ±(k ¡

sp
(µ ¡ sr)

) (105)

i.e. the distribution tends to a Dirac delta function at the point,

k =
sp

(µ ¡ sr)
(106)

and this is the stationary point implied by equation (102).

9.Alternative Production and Savings Functions.
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There are a number of further generalizations to the basic linear model which
may be considered. These include alternative speci¯cations of the production
function, including technical progress;changes in the form of the consumption
function, e.g. savings propensities dependent on the income component; tax-
ation of income and wealth. Again the method of solution is as above; ¯rst
derive the time paths of the macroeconomic parameters, and then if limiting
values of these parameters exist, substitute them into the equation governing
the evolution of the distribution function, or its moment transform and solve.
We shall consider the following cases:

(i) ¯rstly the solution for the general linear savings function and a production
function satisfying the Inada conditions:

(ii)secondly, the solution for the Harrod-Domar production function; and,
(iii) the solution for a 'Kaldorian' savings function, and fourthly,
(iv) the solution for the AK production model.
We treat these problems rather brie°y; they may be viewed as just formal

exercises once the basic model has been understood.

(i) General Linear Savings Function and Inada Production Function
We assume that the equation governing the individual's wealth is,

dk
dt

= s(p + rk) ¡ µk ¡ d (107)

and the aggregate production function,

Y (t) = F(K(t); L(t) (108)

such that,

¹y(t) =
Y (t)
L(t)

= F (
K(t)
L(t)

; 1) ´ f(k) (109)

where f(:) satis¯es the usual Inada conditions, f(k) > 0; f 0(k) > 0; f"(k) <
0; f(0) = 0; f(1); f 0(0) = 1; f 0(1) = 0; k ¸ 0:

The equation governing the evolution of the moments of the distribution
function can be derived as,

dM(N; t)
dt

= ((sr ¡ µ)N ¡ ¸ + ¸n1¡N )M(N; t) + N(sp ¡ d)M(N ¡ 1; t) (110)

First we require knowledge of whether stable values of r and p exist. The 'Solow'
equation for the evolution of the normalized ¯rst moment can be derived as,

dm(1; t)
dt

= s¹y(t) ¡ (µ + ¸(n ¡ 1))m(1; t) ¡ d (111)

In Fig.1 we have illustrated the case where two stationary normalized ¯rst mo-
ments exist at m¤(1) and m¤¤(1):
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(Fig.1 to appear here)

Movement towards m¤¤ or away from m¤ depends on the normalized ¯rst
moment of the initial distribution of wealth. We may solve equation (111)
assuming that we have stationary values of r and p, but not yet specifying
which set.

The solution for the moments is,

M(N; t) =
j=NX

j=1

Cj exp((sr ¡ µ)j ¡ ¸ + ¸n1¡j)t

+
N !(sp ¡ d)NM(0;0) exp(¸(n ¡ 1)t)

Qj=N
j=1 (¸(n ¡ 1) ¡ ((sr ¡ µ)j ¡ ¸ + ¸n1¡j))

(112)

If we assume that the factor prices are determined by marginal productivity
criteria then the conditions for convergence of the moments at either of the two
stationary points are straightforward. From Fig.1 we note that,

at m¤(1) we have sr > µ + ¸(n ¡ 1) (113)

at m¤¤(1) we have sr < µ + ¸(n ¡ 1) (114)

Thus at the lower equilibrium,

(sr¤ ¡ µ)j > j¸n ¡ j¸ > j¸n > ¸ > 0 (115)

since j and n are both greater than one.
Thus all moments, including the ¯rst,diverge, as do the normalized moments.

The condition for convergence of the normalized moments is,

(sr ¡ µ)j ¡ ¸ ¡ ¸(n ¡ 1) + ¸(n ¡ 1) + ¸n1¡j < 0 (116)

Thus if (sr ¡ µ)j > ¸n the moments certainly diverge, and this is the case at
the lower equilibrium as we see from (74).

At the upper equilibrium the ¯rst normalized moment converges since (sr¤¤¡
µ) < ¸(n ¡ 1): However since,

(sr¤¤ ¡ µ)j ? ¸n (117)

the higher moments may or may not diverge. Certainly, all higher normalized
moments will converge if

sr¤¤ < µ (118)

which is also the condition for a stationary equilibrium for individual wealth to
exist,. The qualitative behaviour of the solution at the upper equilibrium for
m(1; t) is thus similar to the solution of the basic model in the previous section.
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(b) Harrod-Domar Production Function
We assume the aggregate production function to be given by,

Y (t)
L(t)

=
1
v

K(t)
L(t)

(119)

In this case, given that the share of pro¯t is ¯ , the rate of interest that each
individual will receive on his wealth is,

r(t) =
¯
v

(120)

and the wage that each individual will receive is

p(t) =
1 ¡ ¯

v
K(t)
L(t)

(121)

Assuming that individuals save a constant proportion of their income, the
change in the individual's wealth is given by,

dk
dt

= s(p + rk) =
s
v
((1 ¡ ¯)

K(t)
L(t)

+ ¯k(t)) (122)

Note that K(t)
L(t) denotes the per capita capital whilst k(t) denotes the wealth of

the individual.
The equation for the moments of the distribution h(k,t) may be derived as,

dM(N; t)
dt

= (N
s
v
¯ ¡¸+¸n1¡N )M(N; t)+(1¡ ¯)

s
v

K(t)
L(t)

NM(N ¡1; t) (123)

The solutions for the zero'th and ¯rst moments, pitting N = 0, and N = 1 in
(123) are,

L(t) = L(0)e¸(n¡1)t (124)

and,
K(t) = K(0)e(s=v)t (125)

Thus,
¹k(t) =

K(t)
L(t)

=
K(0)
L(0)

exp(
s
v

¡ ¸(n ¡ 1))t (126)

In balanced growth, K(t)=L(t) = ¹k¤; i:e: when (s=v) = ¸(n¡1); the well known
'knife edge' property of the Harrod-Domar model. Assuming that the normal-
ized moments up to a given order are in equilibrium, we may solve for the
immediately succeeding moment in terms if the lower. The equation for the
normalized moments of order greater than or equal to two is given by,

dm(N; t)
dt

= ((¯N ¡ 1)¸(n ¡ 1) ¡ ¸ + ¸n1¡N )m(N; t)

+(1 ¡ ¯)¸(n ¡ 1)¹k¤Nm(N ¡ 1; t) (127)
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where we have assumed the ¯rst normalized moment to be in balanced growth
and thus (s=v) = ¸(n ¡ 1):Whether the N 0th moment has an equilibrium value
depends on whether,

(¯N ¡ 1)¸(n ¡ 1) ¡ ¸ + ¸n1¡N ? 0 (128)

Ultimately, of course, this expression is bound to become positive as N increases.
Naturally, if the ¯rst normalised moment is not in equilibrium, i.e. we are not
on the 'knife edge', then none of the higher moments have equilibrium values
either.

(c)The Kaldorian Savings Function
The case where di®erent proportions are saved according to the nature of

the income course can easily be considered. We take the basic model with (10)
replaced by,

dk
dt

= spp + srrk (129)

where sp denotes the propensity to save from the earned income component,
and sr the savings propensity for the unearned component, 0 < sp < sr < 1:

It may appear at ¯rst sight to be rather unrealistic to assume that an in-
dividual saves di®erent proportions from di®erent income sources; however it
has some justi¯cation if we remember that () refers to the mean savings in any
wealth state. All that () then asserts is that if sr > sp then the greater the
individual's wealth;the greater will be the proportion of income saved. This of
course runs counter to Meade's suggestion noted above.

The equation for the moments becomes,

dM(N; t)
dt

= ((srr)N ¡ ¸ + ¸n1¡N )M(N; t) + N(spp)M(N ¡ 1; t) (130)

The equation for the evolution of the normalized ¯rst moment is,

dm(1; t)
dt

= (sr¯ + sp(1 ¡ ¯))m(1; t)° ¡ ¸(n ¡ 1)m(1; t) (131)

and this has a steady state value given by,

¹k¤ = [
sr¯ + sp(1 ¡ ¯)

¸(n ¡ 1)
]

1
1¡° (132)

the corresponding values of r and p at equilibrium;are given by () and () with
s = sr¯ + sp(1 ¡ ¯):

The solution of () for the normalized moments is,

m(N; t) =
M(N; t)
M(0; t)

=
j=NX

j=1

Cj exp(srrj ¡ ¸ + ¸n1¡j ¡ ¸(n ¡ 1))t

24



+
N !(spp)N

Qj=N
j=1 (¸(n ¡ 1) ¡ (srrj ¡ ¸ + ¸n1¡j))

(133)

Note that here, in distinction to the basic model, the share of pro¯t does deter-
mine the mean wealth ratio in equilibrium. It is only the savings propensity of
unearned income which in°uences the convergence of moments higher than the
¯rst.

(d) The AK production function
(to be completed)

10.Taxation and the Distribution of Wealth
In this section we propose to consider the manner in which di®erent taxes

a®ect the inequality in the wealth distribution as measured by the variance, and
their a®ects on the total accumulation of capital. Taxes will be introduced into
the basic model speci¯ed above. The government is viewed purely as a passive
instrument; it levies taxes and redistributes the proceeds back to the individuals
in the form of welfare payments.

The taxes we consider are:-
(i) A Tax on Earned Income, (ii) A Tax on Unearned Income, (iii) A Tax on

Wealth, and (iv) A Tax on Inheritance.
All proceeds of taxation will be assumed to be distributed equally amongst

the population.

(i),(ii),(iii) A Proportional Tax on Earned Income, Unearned Income, and
Wealth

Considering the representative individual, income before tax is,

y = p + rk (134)

After tax and before welfare payments it is,

y1 = (1 ¡ tp)p + (1 ¡ tr)rk ¡ tkk (135)

where tp; tr; and tk are the proportional tax rates on earned income, unearned
income and wealth respectively. The government receipts from all taxes at time
t we denote by T (t); therefore each individual receives in welfare payments the
sum T (t)=L(t). We assume that a constant proportion of disposable income is
saved, then,

dk
dt

= syd = s((1 ¡ tp)p + (1 ¡ tr)rk + T (t)=L(t) ¡ tkk) (136)

Note, we have assumed that the individual views the tax on wealth as a com-
ponent of disposable income.
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To determine the total tax receipts T (t) we simply sum all the individual
tax payments. The amount that one individual pays in tax is,

tpp + trrk + tkk (137)

Therefore total tax receipts are,

T (t) =
Z k=1

k=0
(tpp+trrk+tkk)h(k; t)dk = tppM(0; t)+(trr+tk)M(1; t) (138)

where M(:; t) denotes the Mellin transform as de¯ned above.
Substituting (138) in (136) we have,

dk
dt

= syd = s((1 ¡ tp)p + (1 ¡ tr)rk ¡ tkk + tpp + (trr + tk)
M(1; t)
M(0; t)

) (139)

As expected, the tax on earned income cancels out, since with a perfectly
equal distribution of earned income, and equal welfare payments, each individual
gets back a component of welfare payment exactly equal to the earned income
tax component.

The main equations of the model are therefore,

@h(k; t)
@t

= ¡g(k; r; p; taxes)
@h(k; t)

@k
¡ (gk + ¸)h(k; t) + ¸n2h(nk; t) (140)

where,

g(:) =
dk
dt

= s(p + (r ¡ trr ¡ tk)k + (trr + tk)
M(1; t)
M(0; t)

) (141)

Substituting (141) in (140), and then taking the Mellin transform, we may
derive,

dM(N; t)
dt

= (s(r¡trr¡tk)N¡¸+¸n1¡s)M(N; t)+s(p+(ttr+tk)
M(1; t)
M(0; t)

)NM(n¡1; t)

(142)
When N = 0,

dM(0; t)
dt

= ¸(n ¡ 1)M(0; t) (143)

Hence,
M(0; t) = M(0;0)e¸(n¡1)t (144)

When, N = 1,

dM(1; t)
dt

= srM(1; t) + spM(0; t) = sY (t) (145)

with the corresponding equation for the normalised ¯rst moment as,

dm(1; t)
dt

= s¹y(t) ¡ ¸(n ¡ 1)m(1; t) (146)
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This might appear, at ¯rst sight, a rather surprising result, i.e. that aggregate
wealth accumulation is una®ected by the levy of our speci¯ed taxes. This would
appear perfectly understandable in the case of the income taxes/welfare system;
since with a proportional savings function, shifting the income distribution by
taxes/transfers would make no di®erence to aggregate savings. In the case of
the wealth tax we might presume there to be an e®ect of switching wealth from
rich to poor, wealth that would otherwise not be consumed.

The reason for this outcome lies in our assumption that individuals treat the
wealth tax as a component of income ; if they do not then it can be shown that
aggregate accumulation is a®ected.

Assuming a Cobb-Douglas production function the stable values form(1; t),
p and r are again given by equations (26) to (28). Since we know that a steady
state exists we may thence solve for the higher moments as,

M(N; t) =
j=NX

j=1

Cj exp(s(r ¡ trr ¡ tk)j ¡ ¸ + ¸n1¡j) (147)

+
N !sN((p + (trr + tk)M(1;t)

M(0;t) )
NM(0;0)e¸(n¡1)t

Qj=N
j=1 (¸(n ¡ 1) ¡ (s(r ¡ trr ¡ tk)j ¡ ¸ + ¸n1¡j))

Assuming stability for the normalized second moment we have,

m(2; t) =
2s2(p + (tr + tk=r)r(M(1;t)

M(0;t) )
2

(¸(n ¡ 1) ¡ s(r ¡ trr ¡ tk))(¸(n ¡ 1) ¡ 2s(r ¡ trr ¡ tk) + ¸ + ¸=n)

and this may be expressed as,

m(2; t) =
2(1 ¡ ¯¤)2(¹k¤)2

(1 ¡ ¯¤)(1 ¡ 2¯¤ + 1=n)
(148)

where,
¯¤ = ¯(1 ¡ tr ¡ tk=r) (149)

Since we are in equilibrium, ¯¤ is constant, thus

var(k) =
(1 ¡ 1=n)(¹k¤)2

(1 + 1=n ¡ 2¯¤)
(150)

and,
@var(k)

@¯¤ =
2(1 ¡ 1=n)(¹k¤)2

(1 + 1=n ¡ 2¯¤)2
> 0 (151)

and since,

@¯¤

@tr
= ¡¯ < 0 (152)

@¯¤

@tk
= ¡

¯
r

< 0
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Then,

@var(k)
@tr

< 0 (153)

@var(k)
@tk

< 0 (154)

i.e. increasing both the wealth tax and the tax on unearned income have the
e®ect of reducing the 'de facto' share of pro¯t ¯¤ and thus of reducing the
variance of the distribution of wealth.

(iv) The Inheritance Tax
We now consider the e®ects on the distribution of wealth of a proportional

inheritance tax levied by the government on the property owned by all individ-
uals who die. The proportion of wealth paid in tax is assumed to be td; so an
individual who before death owns wealth to the value k=(1¡ td) would actually
pass on to a single child the sum k; thus an individual with wealth nk=(1 ¡ td)
would pass on to each of n children, assuming inheritances were divided equally,
the amount k.

Now consider the cumulative distribution function of wealth,

F (
nk

(1 ¡ td)
) (155)

this gives the number of individuals who have wealth less than or equal to
nk=(1 ¡ td);now if any of these individuals died, we assume that their wealth
would be divided equally amongst n heirs, and each of these heirs would thus
enter the distribution having wealth less than or equal to k. Thus the equation
governing the evolution of the cumulative distribution function is,

@F (k; t)
@t

= ¡g
@F (k; t)

@t
¡ ¸F (k; t) + ¸nF (

nk
1 ¡ td

; t) (156)

and the equation governing the evolution of the density distribution function is
thus,

@h(k; t)
@t

= ¡g
@h(k; t)

@t
¡ (gk + ¸)F (k; t) + ¸

n2

1 ¡ td
h(

nk
1 ¡ td

; t) (157)

We now have to determine the total receipts of the tax; the receipts are then
presumed to be distributed equally amongst all individuals. For each individual
who dies the tax collected is td times wealth. The proportion of individuals
dying in each wealth range is ¸, thus in each wealth range the total wealth
liable to taxation is equal to the numbers dying in that range times the wealth
of that range, i.e. ¸h(k; t)k; total tax paid in each range is thus td¸h(k; t)k; and
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total receipts of this tax for the whole economy is thus the sum of tax payments
over all ranges. Letting this amount be T (t), we thus have,

T (t) = ¸
Z k=1

k=0
tdkh(k; t)dk = ¸tdM(1; t) (158)

where M(:; t) denotes the Mellin transform of h(k; t) as de¯ned above. Since
this sum is distributed equally across the population, each individual receives
in welfare payments the amount,

¸td
M(1; t)
M(0; t)

(159)

The total disposable income of the representative individual is thus,

yd(t) = p + rk(t) + ¸td
M(1; t)
M(0; t)

(160)

and assuming that we have a proportional savings function,

dk
dt

= g(k) = s(p + rk(t) + ¸td
M(1; t)
M(0; t)

) (161)

The equation governing the evolution of the distribution function is,

@h(k; t)
@t

= ¡(s(p + rk + ¸tdm(1; t))
@h(k; t)

@t
¡ (sr + ¸)F(k; t)

+¸
n2

1 ¡ td
h(

nk
1 ¡ td

; t) (162)

Now taking the Mellin transform of (162), we ,may derive

dM(N; t)
dt

= (srN ¡¸+¸n1¡N (1¡td)N )M(N; t)+s(p+¸tdm(1; t))NM(n¡1; t)
(163)

Thus the equation for the evolution of the normalized ¯rst moment is,

dm(1; t)
dt

= s
Y (t)

M(0; t)
¡ (¸(n ¡ 1) + (1 ¡ s)¸tdm(1; t) (164)

The rate of inheritance tax does a®ect aggregate capital accumulation in this
model;the higher this tax rate the lower the rate of capital accumulation. This
results from the fact that the inheritance tax is not viewed as a component of
income by the individuals from whom it is taken (they are dead at this time) and
during their lifetime no compensating change in savings has occurred. When
the tax is taken and distributed as welfare payments, a part of the capital stock
is thus consumed which would otherwise not occur.
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Assuming a Cobb-Douglas production function, then stable values for ¹k(t),p(t),r(t),
are given by,

k(t)1¡° =
s

¸(n ¡ 1) + (1 ¡ s)¸td
= (¹k¤)1¡° (165)

r(t) =
¯
s
(¸(n ¡ 1) + (1 ¡ s)¸td) = r¤ (166)

p(t) = (1 ¡ ¯)(¹k¤)° = p¤ (167)

and thus the higher the tax rate td; the lower the steady state capital-labour
ratio, the higher the rate of interest, and the lower the wage.

Since we know that a steady state value for m(1; t) exists, we may substitute
this value, and the corresponding p(t) and r(t) into (163) and solve recursively
for the higher moments to give,

M(N; t) =
j=NX

j=1

Cj exp((srj ¡ ¸ + ¸(
n

1 ¡ td
)1¡j(1 ¡ td))t) (168)

+
N !(s + ¸td¹k¤)NM(0; 0)e¸(n¡1)t

Qj=N
j=1 [¸(n ¡ 1) ¡ (srj ¡ ¸ + ¸( n

1¡td
)1¡j(1 ¡ td))]

for N ¸ 2:
Assuming stability, the normalised second moment in equilibrium therefore

takes the value,

m(2; t) =
2s2(p + ¸td¹k¤)2

(¸(n ¡ 1) ¡ sr + ¸td)(¸(n ¡ 1) ¡ 2sr + ¸ ¡ ( n
1¡td

)1¡j(1 ¡ td)
(169)

which on substituting for p and r from (129),(130) may be written,

m(2; t) =
2(1 ¡ ¯¤¤)(¹k¤)2

(1 ¡ 2¯¤¤ + 1
n(1 ¡ td))

(170)

where,

¯¤¤ = (1 ¡
std

(n ¡ 1 + td)
)¯ (171)

Then,

var(k) = m(2; t) ¡ (m(1; t))2 =
1 ¡ 1

n(1 ¡ td)
(1 ¡ 2¯¤¤ + 1

n (1 ¡ td))
(¹k¤)2 (172)

in equilibrium. Note that if td = 0; ¯¤¤ = ¯:
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We may note that @¯¤¤

@td
< 0; i:e: an increase in the inheritance tax, provided

the receipts are divided equally amongst the population, will reduce the 'de
facto' share of pro¯t. Letting, (c:var:)2 = var(k))=(¹k¤)2; then we may show,

@
@td

(c:var)2 =
2

n(1 ¡ 2¤¤ + 1
n (1 ¡ td))2

(1¡¯
(n ¡ 1)(1 + s) + td(1 ¡ s)

n ¡ 1 + td
) (173)

and thus, we may have,
@

@td
(c:var:)2 < 0; only if ¯ (n¡1)(1+s)+td(1¡s)

n¡1+td
) > 1:

The e®ect of a change in td on the coe±cient of variation may in fact be
more clearly understood if we break it down into two separate e®ects; ¯rstly ,just
the imposition of the tax, and secondly, the e®ects of distributing the proceeds
amongst the population.

Considering ¯rst the 'pure tax e®ect'; we may assume that the government
consumes all the tax receipts, or alternatively that the individuals consume all
their welfare payments. In this case the equation governing the moments of the
wealth distribution is,

dM(N; t)
dt

= (srN ¡ ¸ + ¸n1¡N(1 ¡ td)N )M(N; t) + spNM(n ¡ 1; t) (174)

and thus we have the steady state values,

(¹k¤)1¡° =
s

¸(n ¡ 1) + ¸td
(175)

r¤ =
¯
s
(¸(n ¡ 1) + ¸td) (176)

p¤ = (1 ¡ ¯)(¹k¤)° (177)

var(k) =
1 ¡ 1

n(1 ¡ td)
1 ¡ 2¯ + 1

n (1 ¡ td)
(¹k¤)2 (178)

Thus the 'pure tax e®ect' of an increase in td: Now introducing the welfare
payments e®ect, we have,

d
dtd

(c:var:)2 =
2(1 ¡ (1¡td)

n )
(1 ¡ 2¯¤¤ + 1

n(1 ¡ td))2
@¯¤¤

@td
+

@
@td

(c:var:)2 (179)

and thus since @¯=@td < 0; the welfare payments e®ect works in the contrary
direction to the pure tax e®ect, serving to reduce the coe±cient of variation;
the overall change in thus being ambiguous.

11. Conclusion
(to complete)

Mathematical Appendix
(to complete)
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