The Effect of Overcrowded Housing on Children's Performance at School

Dominique Goux (INSEE and ENS) and Eric Maurin (CREST and CEPR)*

March 2003

Abstract

In France, almost one in five 15 year olds lives in a home with at least two children per bedroom. More than 60% of these adolescents have been held back in primary or middle school, a proportion that is more than 20 points higher than it is on average for adolescents of the same age. This paper develops a semi-parametric analysis that suggests a relation of cause and effect between living in an overcrowded home and falling behind at school. According to our estimations, the disparity in living conditions is a very important channel through which parents' lack of financial resources affects their children's schooling.

^{*}Corresponding author : Dominique Goux, INSEE, Timbre F230, Division emploi, 18, boulevard Adolphe Pinard, 75675 Paris Cedex 14, France, e-mail: dominique.goux@insee.fr, phone: 33 1 41 17 54 42.

The Effects of Overcrowded Housing on Children's Performance at School

1. Introduction

Children from poor families do not do as well and leave school earlier than children from rich families. These are well-known facts that no longer need to be validated. The interpretation of these facts, however, is still the subject of great controversy. Consequently, public policies that could help reduce inequalities in educational opportunities remain poorly defined.

One basic issue is whether increasing financial aid to the poorest families represents a good means for improving their children's performance at school. A number of studies argue that parental income, as such, does not have any impact on children's performance at school. According to these studies, the link between poverty and academic failure is not one of cause and effect. They stress that increasing financial aid to poor families would have no effect on the inequalities between children from rich and poor families.¹

Another important issue concerns the impact of targeted aid, aimed to directly improve the living conditions of poor children. Even if financially assisting the parents of the poorest families would not have any effect on their children's schooling, aid aimed at specifically improving children's access to medical care or quality of housing could have a very important and positive effect on children's development and performances at school.²

In this paper we try to contribute to this second debate. We focus on one aspect of children's living conditions, which we suspect to be of particular importance – the amount of personal space they have at home for their activities. More specifically, we try to evaluate the impact of the number of persons per room on the probability of being held back in primary or junior high school. This does not mean measuring the overall effects of parental income, but the effects of a very particular potential use of parental income – the spending allotted for housing so that children do not have to live in an overcrowded space. The underlying

¹See Mayer (1997), Blau (1999) and Shea (2000).

²The absence of a direct effect of parental income on children's performance does not imply that an improvement in poor children's living conditions would not have a positive effect on their success at school. The absence of an income effect can just as well mean that the parents receiving an income supplement have other priorities than to improve the conditions related to their children's success at school.

issue is to understand whether public policies favoring quality housing for lowincome families could also serve as a vehicle for improving the performances of their children and equal opportunities at school.

To shed light on this issue, we have used the French Labor Force surveys, which were conducted each year by the French National Institute for Statistics and Economic Studies (hereafter, INSEE) between 1990 and 2000. These surveys have provided us with large samples of 15 year olds with information on whether they have been held back a grade in elementary school or in junior high school, as well as on how many people there are per room in their home. This dataset makes it possible to analyze the impact that overcrowded housing has on academic performances using very large samples of 15-year-old adolescents. We have also used a retrospective survey on schooling and housing conditions during childhood, which was carried out by INSEE in 1997. This survey makes it possible to analyze the impact of having shared a room during childhood on the probability of dropping out of the educational system before earning a diploma.

From a methodological viewpoint, the main problem is to estimate the effect of potentially endogenous regressors (in particular, overcrowded housing) on binary dependent variables (to be or not to be behind at school). In order to solve this problem, we have used the semi-parametric estimation method recently developed by Lewbel (2000). This method makes it possible to apply instrumental variable techniques to non-linear models as easily as to linear models.

To implement Lewbel's technique and identify the causal effect of the housing conditions, we have consecutively used two different sets of instruments. The first set is constructed from the available information on the sex and month of birth of the two oldest children living in the home, as well as on the absolute age difference between the parents. Families in which the two oldest children are of the same sex tend to be more numerous and to live more often in overcrowded housing than other families. One of our basic identification assumptions is that this is the main channel through which the sex differences between the oldest siblings actually affect school performances. The second set of instruments is constructed from the available information on the parents' place of birth. Parents born in urban areas tend - ceteris paribus - to live more overcrowded housing than parents born in non-urban areas. The identification assumption is that this is the main channel through which parents' place of birth affect school performances. Standard overidentification tests do not indicate any significant inconsistencies in our different identification hypotheses.

Within this framework, our main empirical findings may be summarized as fol-

lows. First, a very significant correlation exists between children's performances and overcrowded housing. Almost 20% of French adolescents live in a home with at least two children per bedroom. More than 60% of these adolescents have been held back a grade in primary or middle school, a proportion more than 20 points higher than it is for adolescents in non-overcrowed housing. Secondly, the causal effect of overcrowding is probably even larger than what the raw correlation suggests. The IV estimates of the overcrowding effect are significantly greater than the OLS estimates regardless of whether we use instruments built from the information on the sex and date-of-birth of the oldest siblings or on the parents' place of birth. Our data only provide an indirect and potentially rough measurement for housing conditions. The downward biases that affect the OLS estimates plausibly correspond to biases that arise from measurement errors.

Lastly, our survey with retrospective information on housing conditions confirms that the probability of dropping out of school before earning a diploma is significantly lower for those who did not share their room during early childhood. All in all, our data provide an array of findings that suggest that overcrowded housing is an important way in which parental poverty affects children's outcomes.

The paper is organized in the following way. In the next section, we present an overview of medical, sociological and sociopsychological literature, which describes the impact of overcrowded housing on the health and behavior of individuals. In Part III, we develop a model for parental behavior, making it possible to define what is meant by the causal impact of overcrowding on school performance, as well as the econometric strategies that make it possible to identify that impact. In Part IV, we describe the data and methods used, and the econometric results are presented in Part V.

2. The Effects of Overcrowded Housing: An Overview of the Literature

The sociological and social psychological literature has long been interested in the problems caused by overcrowded housing³. Empirically, the degree of overcrowding is measured by the number of persons per room. Theoretically, the problems caused by lack of living space are conceptualized as the consequences

 $^{^{3}}$ Since the 1960s, experiments carried out on groups of rats have brought to light the very serious behavioral and social problems that occur in animals when the size of their vital living space is modified.

(a) of an excess of interactions, stimulations and demands from the people living in the immediate area, and (b) of a lack of intimacy and the possibility of being alone. People who live in overcrowded housing suffer from not being able to control outside demands. It is impossible for them to have the necessary minimum amount of quiet time they need for their personal development. One of the most convincing sociological studies on this subject is perhaps that of Gove et al (1979). Using American data, the authors establish the existence of a very clear correlation between the number of persons per room and individuals' mental and physical health⁴.

Medical literature has also shown great interest in the health of people living in overcrowded conditions, i.e. in houses and/or apartments that are too small for their families. It has been well established that individuals living or having lived in such conditions are sick more often than others, particularly due to respiratory insufficiency and pulmonary problems ⁵ (Britten et al, 1987, Rasmussen et al, 1978, Mann et al, 1992). In general, people who grow up in overcrowded housing die at a younger age than others (Coggon et al, 1993, Deadman et al, 2001), most notably of cancer (Barker et al, 1990).

The medical literature gives many reasons for these health problems and their persistence. Living in an overcrowded space is a source of stress and favors illnesses linked to anxiety. The members of a family living in a crowded space also transmit their infections to one another more easily, weakening their immune systems. Living in an overcrowded space puts people at greater risk to problems linked to poor ventilation and hygiene conditions, such as poisoning caused by the smoking of one or more family members (see the survey by Prescott and Vestbo, 1999).

⁴In addition, the authors establish that the number of persons per room is a good measurement for *feelings* of excessive outside demands and lack of private time. They also show that the quality of care given to children, and more generally, the quality of the relationship between parents and their children, tends to deteriorate when the number of individuals per room increases. Gove et al's (1979) results are obtained from American data, but they compare rather well with Chombart de Lauwe's (1956) seminal results based on French data, which also establish a statistical relationship between the number of persons per room and the frequency of social pathologies.

⁵At greater risk due to unhygienic conditions, they suffer more often than others from appendicitis inflammation. According to Coggon et al (1991), the drop in appendicitis inflammation cases observed since the beginning of the 1960s in Anglesey is linked more to the decrease in the number of overcrowded housing than to the improvement in the housing's modern conveniences. In addition, Fuller et al (1993) established a link between the degree of overcrowded housing and the probability of mental health problems through analyzing data from Thailand.

With overcrowded housing occupants' health at greater risk and their capacity for intellectual concentration being decreased, it is clear that a lack of space is a potentially unfavorable factor for children's success at school. To our knowledge, however, no study that analyzes the nature and intensity of the links between available living space and children's success at school exists in the economic literature. The work published in the sociological and medical literature corresponds essentially to the analysis of statistical correlations. Given that housing and health problems probably share common unmeasured determinants, these statistical correlations do not necessarily correspond to relations of cause and effect. The meaning of the results obtained from this literature is unclear.

In the next section, we will develop an economic model of family behavior that makes it possible to define what we mean by the causal effect of overcrowding on children's performance at school. This model will also help us to define econometric strategies that make it possible to identify this effect.

3. Theoretical Framework and Econometric Model

In this section, we develop a model for family behavior that describes the simultaneous determination of the number of persons per room and the probability of academic failure. Our purpose is to define what is meant by the effects of overcrowding on schooling and to clarify the conditions that make it possible to econometrically identify this effect. Our model is based on the following assumptions:

(H1) the academic abilities of a child (noted Q_i for the child *i*) depend on the exogenous characteristics of the child measured in the survey (x_i) , the characteristics unmeasured in the survey (u_i) , but also on the total number of children in the family (N_i) as well as the amount of space available for each member in the family home (L_i) . The underlying assumption is that children do better at school when they have a quiet room for studying, and have parents who do not have to divide their time between too many children. To stay within a simple framework, we assume that Q_i can be log-linearly decomposed,

$$\ln Q_i = \alpha \ln L_i + \beta N_i + \gamma x_i + u_i. \tag{3.1}$$

(H2) a child experiences academic failure and repeats a grade in elementary school and/or middle school if his/her scholastic abilities Q_i are lower than a minimum aptitude threshold, which depends only on his/her relative age within

his/her age group⁶ (written a_i). The assumption is that at a given level of ability, a child is more vulnerable to being held back if he/she was born at the end of the year, meaning that he/she is among the youngest of his/her age group. In noting E_i as the dummy variable with a value of 1 when the child *i* is failing, we postulate that there exists an intercept Q_0 and a parameter θ , such that we can write:

$$E_i = 1 \Longleftrightarrow \ln Q_i + \theta a_i < Q_0. \tag{3.2}$$

(H3) depending on their income (R_i) , the number and characteristics of their children, the parents of the child *i* choose a family consumption level (C_i) and an available space for each person in the family home (L_i) in order to maximize a family utility function $V(C_i, L_i, Q_{i1}, ..., Q_{iN_i})$ subject to the budget constraint: $C_i + q_L(N_i + 2)L_i = R_i$ and the schooling abilities' production constraint: $\ln Q_{ik} =$ $\alpha \ln L_i + \beta N_i + \gamma x_{ik} + u_{ik}$, where x_{ik} and u_{ik} characterize the *k*-th child of the family *i*, while q_L represents the price per square meter.

Assumption (H1) describes how abilities are produced by housing conditions. Assumption (H2) describes the link between abilities and failure, such as it is measured in our data. Assumption (H3) describes how the parents choose between spending that improves the family's living conditions and other forms of spending.

In general, the decisions made by the parents lead them to express a housing demand $L = L(R, q_L, N, Z, x, u)$ as a function of income, price, number of children, childrens' characteristics and factors (denoted Z) which shape their preferences V. With these notations, our purpose is to determine the impact α of L_i on academic failure E_i when N_i , x_i , a_i and u_i are kept constant. Using (3.1) and (3.2), the corresponding model can be written as:

$$E_i = 1 \iff \alpha \ln L_i + \beta N_i + \gamma x_i + a_i + u_i < 0.$$
(3.3)

where the coefficients are normalized so that the impact of the relative age is equal to 1 (i.e., $\theta = 1$). By convention, the intercept Q_0 is included in the group of exogenous variables x_i .

If the unobserved factors of academic failure u_i could be assumed independent from L_i , the identification of α would not cause any particular problem. The problem is that these factors are potential determinants of L_i . In this scenario, it is unclear whether the correlations observed between E_i and L_i reflect the

⁶In France, two children belong to the same age group (i.e., are in the same year of school) if they were born in the same year.

causal effect of L_i on E_i , or the fact that the two variables L_i and E_i both vary simultaneously with u_i . To avoid this kind of problem, it is necessary to observe instrumental variables that affect the housing conditions L_i without determining academic failure E_i . Within our theoretical framework, such instruments typically correspond to preference variables that belong to Z_i , but are uncorrelated with u_i . Before describing our econometric strategy in detail, we will develop two extensions of our basic model.

Extensions of the Basic Model

In the preceding sub-section, we assumed that the available space in the home L is the only channel by which parental income affects schooling. Let us now consider the case where other channels exist (i.e. other kinds of spending F) that make it possible to significantly improve children's performance at school.

$$\ln Q_i = \alpha \ln L_i + \beta N_i + \delta \ln F_i + \gamma x_i + u_i. \tag{3.4}$$

Given that F_i is unobserved and potentially determined by the same factors as L_i (namely parental income and preferences), the conditions under which α is identifiable are not as straightforward as in the previous subsection.

For the sake of simplicity, assume that the (log) utility can be written $\ln V = \rho(Z') \ln U(C, L; Z) + (1 - \rho(Z') \ln Q)$, where U is an homogenous utility function while Z and Z' characterize parents' preference system. The $\rho(Z')$ parameter represents the importance given by parents to their children's development. Under these assumptions, it is not difficult to check that the demand for inputs can be written L(R, Z, Z'), C(R, Z, Z') and F = f(Z')R (for more details, see appendix A). Within this framework, equation (3.3) can be rewritten as,

$$E_i = 1 \Leftrightarrow \alpha \ln L_i + \beta N_i + \gamma x_i + \delta \ln R_i + a_i + v_i < 0, \tag{3.5}$$

where $v_i = u_i + \delta \ln f(Z')$ is a residual that neither depends on R nor on the variables which belong to Z, but not to Z', i.e. the preference parameters which specifically determine the trade-off between consumption (C) and the space (L) available for each person in the family home. As a consequence, the identification of α now requires us (a) to find an instrumental variable z that belongs to Z but not to Z' and (b) to introduce (log) income as a supplementary control variable⁷ (otherwise R would affect jointly L(R, Z, Z') and the residual of the model).

⁷Let us emphasize that including income as proxy for unobserved inputs would be problematic if we were sticking to an OLS specification. It is indeed very likely that R is not the only source

In Appendix A, we also study the case where the quality of housing varies across the public and private sectors and has an impact on children's performance at school. In such a case, it is difficult to identify the effects of overcrowding without at the same time identifying the effects of the housing sector. The housing sector being a direct determinant of the price per square meter, it is indeed relatively difficult to justify the existence of an instrument that explains the choice of the size of the home without also explaining the choice of the sector. Equation (3.5) has thus to be rewritten in the following way:

$$E_i = 1 \Leftrightarrow \alpha \ln L_i + \beta N_i + \gamma x_i + \delta \ln R_i + \theta P u b_i + a_i + v_i < 0.$$
(3.6)

where Pub_i indicates whether the house belongs to the public $(Pub_i = 1)$ or private sector $(Pub_i = 0)$. The simultaneous identification of α and θ requires (at least) two instrumental variables. In the empirical application, we will use instruments constructed from the available information on the sex and age composition of the oldest members of the family, as well as on the father's and mother's place of birth.

In the preceding sections, we have implicitly considered the total number of children as an exogenous variable. A perhaps more realistic approach consists in assuming that parents' preferences only determine, in an exogenous way, a minimum number of children N_0 , and that parents choose, in an endogenous way (i.e., in light of the characteristics of the N_0 first children), their final number of children N_i ⁸. Assuming that N_i is endogenous, it is difficult to think of variables that would be good instruments for estimating the effects of overcrowded housing while not being explanatory factors for the total number of children N_i : every factor that determines that families live in a spacious home is also potentially a factor pushing them not to have too many children. Given this reality, it seems problematic to estimate the overcrowding effect without estimating at the same time the family size effect. This is the reason why our models do not focus on the sole overcrowding effect. We always estimate simultaneously the effects of both family size and overcrowded housing ⁹.

of correlation between L and F.(i.e., very likely that $Z \cap Z' \neq \emptyset$). Assuming that some preference parameters affect both L and F, the regression coefficient of E on L holding R constant provides a biased estimate of the parameter of interest which is the regression coefficient of E on L holding F constant.

⁸In the empirical application, we will limit our analysis to families with at least two children (i.e., such that $N_0 = 2$).

⁹To evaluate the biases that may arise from errors in the measurement of $\ln R_i$, we will also

4. Data and Method

The data used for estimating equations (3.3), (3.5 and (3.6) come from the French annual Labor Force Surveys that were carried out between 1990 and 2000. Each survey corresponds to a sample of about 80,000 households, representative of the population of French households (sampling rate 1/300). Each member of the household who is 15 or older is surveyed, with the cut-off age being December 31, of the year preceding the one the survey is conducted. These surveys make it possible to construct a large sample of 15 year olds (i.e., responding in t, born in t - 15), and to analyze the links that exist between their housing conditions and situations at school.

An interesting feature of the French Labor Force Surveys is that only one-third of the sample is renewed each year. For each t, we can construct a sub-sample of adolescents born in t - 15 with information on their situation at school at t and t + 1. This sub-sample makes it possible to analyze the links between the housing conditions at t and the probability of repeating a grade at t + 1 (i.e., being in the same grade at t and t + 1).

4.1. Variables

For each 15-year-old respondent, the Labor Force Survey gives (a) their sex, date of birth and the grade they are in at the time of the survey, (b) the number of persons and the number of rooms in their home, (c) their parents' wages and occupations (which makes it possible to code their families' socioeconomic level using the French Occupational Prestige Scale), (d) their parents' age and place of birth and (e) the number, sex and birth date of the other children living in the home. The survey also indicates if the family home belongs to the public sector.

Respondents of year t born in t - 15 are in at least the ninth grade if they have not repeated a year. Thus, our measurement for "having repeated a grade in elementary school and/or middle school" is simply a dummy variable that equals 1 if they are not yet in the ninth grade. For respondents that are tracked for two years, our measurement for "repeating a grade" equals 1 if they are in the same grade at t and t + 1.

perform regressions where $\ln R_i$ is assumed endogenous. We will use the information available on the head of the household's and his or her spouses' fathers' past occupations as instrumental variables. By construction, the past situation of grandparents is correlated with the permanent components of parental income, but uncorrelated with its transitory components (see Maurin, 2002).

Knowing the number of rooms (NP) and the number of children (NE), it is also possible to construct an estimation of the number of children per bedroom for each home. Assuming that one room is communal and that the parents have their own separate bedroom, this estimation can be written as (NP - 2)/NE. Throughout the remainder of the paper, our measurement for overcrowding is a dummy equal to 1 when $(NP - 2)/NE \leq 1/2$, i.e. when there are at least two children per room. Our econometric work has mostly consisted in regressing our dummy variables for academic failure on this dummy variable for overcrowding¹⁰, using family size and family income indicators as control variables.

4.2. Samples

The basic analysis will be carried out using the sample representative of those individuals who were born in t-15, observed in the Labor Force Surveys conducted in t = 1990, ..., 2000, living in two-parent families with at least two children (the basic instrumental variables are only defined when at least two children are living in the home). This sample contains about 19,000 observations. Table 1 presents the 15-year-old respondents' distribution according to the main criteria used in this paper. We can see that over 17% of adolescents (i.e., 3378/19499) live in overcrowded housing, and that the probability of having repeated a grade is more than 20 points higher for them (61%) than for others (39.4%). In accordance with what other studies have already found, the probability of having repeated a grade is higher for boys than girls, for children born at the end of the year than those born at the beginning, for the children of large families than those of smaller families, and finally, for the children of poor families than those of rich families.

In addition to the Labor Force Surveys, we also used a retrospective survey conducted in 1997 based on a sample of about 1,000 individuals, representative of the French male population, aged 20 to 40. The respondents describe their schooling as well as their housing conditions during childhood. This survey makes it possible to analyze the impact of having had one's own room during childhood on the probability of dropping out of school before earning a diploma by applying econometric strategies similar to those used to analyze the data from the Labor Force Surveys. Table 2 presents the distribution of the respondents from the 1997 retrospective survey according to family size, year of birth, father's occupation and

¹⁰According to this definition, two children and two parents living in a two-room house or apartment or three children and two parents living in a three-room house or apartment are considered to be living in overcrowded housing.

housing conditions during childhood. This table also describes the variations in the probability of leaving school without a diploma according to the same criteria. The survey confirms that the probability of not earning a diploma is greater for older generations than for recent generations, for large families than for those with only one or two children, and finally, for blue-collar families than for white-collar families. The correlation is also very clear between the housing conditions during childhood and the probability of dropping out of school before earning a diploma. Close to 56% of the respondents said that they did not grow up having their own room.¹¹ One-third of these individuals dropped out of school before earning a diploma, meaning a rate of academic failure twice that of other children.

4.3. Estimation Method and Instrumental Variables

For the rest of this paper, our purpose will be to identify the parameter α that appears in equations (3.3), (3.5) and (3.6). If these models were linear, it would be sufficient to observe a set of instrumental variables, i.e. a set of variables that explains our endogenous regressors without determining performance at school. With the dependent variable being binary, the observation of such instrumental variables is necessary, but not sufficient. A large amount of literature has recently been developed on the supplementary conditions that make it possible to identify the impact of endogenous regressors on binary dependent variables (see Blundell and Powell, 2000). In this paper, we will use the approach proposed by Lewbel (2000), which is particularly adapted to our problem.

In order to identify the effect of an endogenous regressor in a binary choice model, Lewbel shows that all that is necessary is to observe (in addition to the instrumental variables Z_i) a continuous explanatory variable x_{0i} , which is such that the distribution of u_i , conditional to the instruments and to the other exogenous

¹¹The retrospective survey on schooling and housing conditions during childhood gives a percentage of individuals who did not have their own room during childhood as almost three times greater that the percentage of children living in overcrowded housing estimated from the Labor Force Survey. There are at least two reasons for this. The first one is a generation effect: most of the respondents of the retrospective survey were 15 years old during the 1980s, while the respondents of the Labor Force Survey were 15 years old during the 1990s. Houses and apartments were made larger from one decade to the other. In addition, the definition of overcrowding used in the Labor Force Survey is much more restrictive than the one used in the career survey. As a first approximation, living in overcrowded housing (with the meaning the word is given in the Labor Force Survey) means that all the children in the home grew up sharing a room with more than one sibling, not just the respondent.

regressors, is independent from x_{0i} .¹² Once such a regressor x_{0i} and instruments Z_i are made available, Lewbel (2000) shows that the estimation of the impact of the endogenous regressors on a binary variable E_i simply requires applying the standard instrumental variables technique to the following dependent variable LE_i with:

$$LE_{i} = \frac{E_{i} - I(x_{0i} > 0)}{f(x_{0i}/x_{i}, Z_{i})}$$

where $I(x_{0i} > 0)$ is a dummy variable with a value of 1 when $x_{0i} > 0$, and $f(x_{0i}/x_i, Z_i)$ is the density of x_{0i} conditional to the Z_i instruments and other exogenous variables in the model x_i .

For our case, a natural candidate for x_{0i} is the relative age (denoted a_i) of the adolescent *i* in his/her age group, i.e. within the cohort of adolescents who were born the same year as he/she was. This variable is continuous and it is reasonable to assume that it satisfies the exogenous conditions introduced by Lewbel. As we will confirm a little later, this variable is definitely a factor of being held back a year at school: children born at the end of the year – the youngest in their age group – are clearly held back much more often than children born at the beginning of the year.

As for the instrumental variables, we have used in turn two different sets of instruments for identifying the effects of overcrowded housing and family size. The first set is constructed from the information available on the differences in sex and season-of-birth between the two oldest siblings¹³ as well as on the absolute age difference between the parents. These variables describe the basic demographic differences between the oldest members of the family. For the group of families with at least two children, our data set shows that the families where the two

 $^{^{12}}$ It is also necessary that the support of x_0 be large and defined in such a way that it contains 0. An alternative assumption is that the distribution of very high or very low propensities of being held back (i.e., propensities that are either so high or so low that the probability of being held back is either 0 or 1, regardless of x_0) is symmetric. See Magnac and Maurin (2002).

¹³Sex and season-of-birth differences between the oldest children have already been used in other contexts, most notably to identify the effects of family size on mothers' labor supply (see Angrist and Evans, 1998 or Rosenzweig and Wolpin, 2000). Assuming that mothers' labor supply actually belongs in the production function, our estimated impact of family size has to be understood as the combination of a direct negative effect (more children implies ceteris paribus less ressources per children) and an indirect positive effect (more children increases the time spent at home by mothers). Within this framework, it is unclear whether we should expect a positive or a negative net effect of family size on performances.

oldest children are the same sex tend to be on average bigger (see Appendix B). These families also tend to live in overcrowded housing more often than other families, especially if the two oldest children were born at different periods of the year. The impact of the sex differences between the two oldest siblings on the family size and the housing conditions can be interpreted as reflecting that parents prefer mixed-gender families and are less reluctant about bringing up two children in the same room when they are the same sex^{14} . We will also use an indicator of the absolute age difference between parents as a supplementary instrument to improve the precision of our IV estimates (especially when estimating models with three potentially endogenous regressors). From a technical viewpoint, this instrumental variable actually contributes to improving the precision of our estimates while over-identification tests do not show any significant correlation between this variable and the estimated residuals. From a more substantive viewpoint, the implicit assumption is that the absolute age difference between parents is an indicator of parents' general attitude towards family issues. Parents with a small age difference are assumed to have more "modern" preferences, i.e. to place greater emphasis on the quality of their children's lives rather than on the quantity of children. As a matter of fact, controlling for family income, our data confirm that parents with a small age difference tend to have less children and to live in less overcrowded housing than parents with a large age difference.

The second set of instruments has been constructed from the available information on the mothers' and fathers' place of birth. French metropolitan area is divided into 96 elementary administrative subdivisions (*départements*). For each household, the survey provides us with the *département* where the different members of the household were born. As shown in Appendix B, significant differences in family size and housing conditions exist according to these variables.¹⁵ For instance, mothers born in the Parisian region or in one of the large French cities tend ceteris paribus to have less children than mothers born in less urban areas. We interpret parents' place of birth as proxies for the housing conditions that parents' have experienced during their early childhood. We interpret the correlation

¹⁴Since the month a child was born is a determining factor of his/her repeating a grade, the difference in the months the oldest children were born determines the difference in the grade they are in. We interpret the relation between the difference in season-of-birth and overcrowding as meaning that -ceteris paribus- the parents are less likely to bring up two children together if they are in different grades.

¹⁵We have grouped together the *départements*, whose impacts on family size and overcrowded housing were similar. We end up with 6 groups of *départements* for the mothers' place of birth and 5 groups for the fathers'.

between the parents' place of birth and current housing conditions as reflecting the fact that decisions on housing conditions are to some extent determined by early childhood experience. The identifying assumption is that this is the main channel through which parents' place of birth affects children's performances.

4.4. The legitimacy of the instruments

We will test the legitimacy of our different instruments using Sargan tests. One interesting feature of Lewbel's approach is that it makes it possible to test overidentification restrictions in non-linear contexts, using the same simple tools as in linear contexts. Generally speaking, our Sargan tests will not indicate any significant correlation between the estimated residuals and the instrumental variables.

Table B3 provides additional evidence of the validity of our basic instrumental variable, namely the sex differences between the oldest siblings. More specifically, Table B3 shows that the number of hours spent at work by parents and the proportion of mothers in the labor force increase significantly with family size, but do not vary significantly with the sex composition of the oldest siblings. Holding family size constant, there exist no statistically significant differences in the mean number of hours at work (or in the proportion of mothers out of the labor force) between same-sex families and other families¹⁶. Put differently, the sex composition of the oldest siblings has no effect on the amount of time spent at home by parents with their children. Given that this amount of time plausibly represents one of the most important input which is omitted from our schooling-performance equation, this result means that our basic instrument is not correlated with one potentially important component of the residual. If we had found a correlation between our instrumental variable and this input, we would have been obliged to introduce this input as a supplementary control variable in the equation. This would have implied a potentially considerable loss in precision.

5. Results

Before moving on to the more sophisticated analysis, we will show our basic findings through a simple tabulation. More specifically, Table 3 shows that the probability of being held back a grade is much greater for children living in overcrowded housing, regardless of the size and the socioeconomic level of the families under

¹⁶We have checked that the same result holds true for our second basic instrument, i.e., the differences in season of birth between the oldest children.

consideration. For instance, when we focus on relatively "poor" families, we find that overcrowding increases the probability of being held back by about 13 points (+29%) in relatively small families, and by about 10 points in relatively large ones (+18%). Generally speaking, there exist almost as many differences in the probability of being held back between overcrowded and non-overcrowded families as there are between poor and rich families or between large and small families.

To probe the robustness of these results, we have also performed standard probit regressions (not reported, see Goux and Maurin, 2001). They confirm what the raw statistics suggest: ceteris paribus, adolescents living in a home with at least two children per bedroom are held back much more frequently than other adolescents, just as boys are more likely to be held back than girls, and children with at least two brothers or sisters are more likely to fall behind than those with only one sibling. Within this parametric framework, the overcrowding effect is significantly larger than that of children's sex and than that of family size. These models also confirm that children born at the beginning of the year are -ceteris paribus- significantly less often held back than children born at the end of the year ¹⁷.

5.1. Overcrowding and the Probability of Being Held Back: A Causal Analysis

We have estimated several semiparametric models, using Lewbel's technique and both OLS and IV specifications. The first kind of model corresponds to equation (3.3) (see Table 4). The dependent variable is a dummy variable with a value of 1 when the adolescent has been held back at school. The potentially endogenous explanatory variables are (a) a dummy variable (L_i) with a value of 1 when there are at least two children per bedroom, (b) a dummy variable (N_i) with a value of 1 when there are at least three children living in the home. The L_i variable represents our measurement for overcrowding while N_i represents our measurement for family size. We have added several exogenous regressors to these two potentially endogenous variables: the adolescent's sex, a variable indicating if his or her family lives in the Paris region and a series of variables indicating the survey date. The date of birth within the year is used as a special auxiliary variable for implementing our semiparametric estimators.

 $^{^{17}}$ A linear regression of the probability of being held back on the different explanatory variables confirms this diagnosis: the overcrowding effect is about .11 (i.e. 11 points), i.e. as large as the gender effect (.11) and slightly larger than the family size effect (.09).

Model 1 in Table 4 corresponds to our simplest specification. The binary model has been linearized using Lewbel's technique and estimated using the OLS method. The results obtained within this framework are quite consistent with what raw statistics show. The overcrowding effect is twice as large as that of sex and twice as large as that of family size.

The results from this OLS specification are valid under the assumption that errors in the measurement of overcrowding are negligible and that no unmeasured factors simultaneously explain the number of persons per room and the probability of being held back at school. The IV specification (model 2) corresponds to the re-estimation of the OLS model using the generalized method of moments: the dummies for family size and overcrowded housing are considered to be potentially endogenous, and their effects are identified using instrumental variables that describe the differences in sex and season of birth between the two oldest children in the family.

This IV model leads to a very strong re-estimation of the overcrowding effect and a decrease in the number of siblings effect, the latter becoming no longer significant at standard levels. The IV effect of overcrowding ($\hat{\alpha} = 0.92$) is nine times as significant as that of sex. The downward biases that affect the OLS estimates suggest that some unobserved factors simultaneously explain the space at home and the performances at school. Our data only provide an indirect and potentially rough measurement for the housing conditions that children have experienced during their early childhood. The downward biases that affect the OLS estimates may also correspond to biases that arose from measurement errors.

How should a 0.92 estimated impact be interpreted? Given the implicit normalization of our binary models, this result means that the causal impact of overcrowding is equivalent to $0.92 \times$ the impact of a one-year difference in date-ofbirth. For poor children living in overcrowded housing, the data show that the difference in the probability of being held back between children born at the beginning of the year and at the end of the year is about 20 points. Thus, according to our estimates, the ceteris paribus impact of eliminating overcrowding for these poor children is a 18 points (i.e., $.92 \times 20$) reduction in the probability of being held back (i.e., -27%). Table 4 reports the average marginal impact of eliminating overcrowding which is 16.6 percent points when we use the IV specification corresponding to model 2.

The preceding models implicitely assume that housing is the main channel through which income affects schooling. They neglect the other potential use of parental income and potentially overestimate the impact of housing conditions. To address this issue, in the next section, we will re-estimate the housing conditions effect by introducing a parental income measurement as a supplementary regressor¹⁸.

5.2. Overcrowded Housing and the Probability of Being Held Back: Estimation of Model (3.5)

Table 5 presents the estimation of equation (3.5). To control for the effects of parents' direct spending on children's education, a permanent income measurement has been introduced as a supplementary explanatory variable. This measurement corresponds to the position of the father's occupation on the French Occupational Prestige Scale¹⁹.

The OLS specification (model 3) confirms the existence of a strong statistical relationship between the housing conditions and the probability of being held back at school, even when controlling for the father's socioeconomic status.

Model 4 corresponds to the IV re-estimation of model 3 when both the overcrowding and number of siblings dummy variables are considered as potentially endogenous. To improve the precision of the estimator, we have added an indicator of the absolute age difference between parents to the set of instruments used for estimating model 3. Sargan tests do not reject the corresponding over-identifying restrictions.

When compared to model 3, this model leads to a strong (and statistically significant) re-estimation of the overcrowding effect. In model 4, the overcrowding effect ($\hat{\alpha} = .75$) appears seven times greater than the effect of the child's sex, while the two effects are very similar in model 5. Given our normalization choice and given the magnitude of the effect of date-of-birth within the year (i.e., 20 points), this result means that eliminating overcrowding for poor children in overcroweded housing would reduce their probability of being held back by about 15 points (i.e., $.75 \times 20$), meaning a 22% reduction. Table 5 provides the average marginal effect of eliminating overcrowding, which is 13.5 points when we use the IV specification corresponding to model 4.

¹⁸Given that the instruments used in the previous subsection (sex and season-of-birth differences between the oldest siblings) are not correlated with parental income, the introduction of income as a supplementary regressor should not have any significant effect on our basic IV results, however.

¹⁹For more details on the construction of this variable, see Chambaz et al. (1998). As shown by Maurin (2002), this variable is actually strongly correlated with family income.

Comfortingly, model 4 provides us with results that are not significantly different from those of model 2. We end up with similar IV evaluations of the true effect of overcrowding regardless of whether we introduce parental income as a supplementary regressor or not. The consistency of our different IV evaluations may be interpreted as an indicator of the quality of our identification strategies.

Lastly, model 5 corresponds to a re-estimation of model 3 when family permanent income is itself considered as potentially endogenous or, at least, poorly measured. We have used two dummy variables that indicate if the adolescent's grandfathers were managers or professionals (or not) when his or her parents were children, as specific supplementary instrumental variables. The results obtained remain close to model 4. The impact of overcrowded housing remains about six times higher compared to the impact of the adolescent's sex.

5.3. An Alternative Set of Instrumental Variables

Table 6 proposes a re-estimation of models 4 and 5 using a different set of instruments for identifying the impacts of family size and overcrowded housing. The new instruments are constructed from the available information on the fathers' and mothers' place of birth (see Appendix B).

Most interestingly, the IV results obtained using these new instruments are not statistically different from the results obtained using the first set of instruments. The estimated effect of overcrowded housing is significant and large. When family size, family income and overcrowded housing are all instrumented at once, the estimated impact of overcrowded housing remains about five times higher than the estimated impact of the child's sex (model 9).

Model 8 in Table 6 corresponds to the case where we have simultaneously used the two sets of instruments. The results remain very similar to those from model 9 – the overcrowding effect is more than four times higher than the sex effect. Furthermore, the over-identifying restrictions are not rejected by the Sargan test. There is no inconsistency in using instruments constructed from available information on the place of birth or instruments constructed from available information on the demographic composition of the (oldest members of the) family.

5.4. An Alternative Dependent Variable

The dependent variable analyzed in the previous subsections is whether a 15year-old child has ever been held back a grade. This is a cumulative outcome, but the regressors are measured as of the survey date. This raises measurement error problems, which are perhaps only partially overcome by our IV estimation strategy. In this subsection, we consider the subsample of adolescents, for which we have information on their grade at t and t + 1. We focus on the probability of repeating a grade at t + 1, i.e. being in the same grade at t + 1 and t. The interesting feature of this outcome is that it is non-cumulative and measured after the regressors. Table 7 shows that 15 year olds are more likely to repeat a grade when they live in an overcrowded home, regardless of the size and income of their family. The probability of repeating a grade is on average 9 points higher (+50%) for 15 year olds living in overcrowded housing.²⁰

Table 8 goes a step further and presents an econometric evaluation of the causal effect of overcrowding at t on the probability of repeating a grade²¹ at t + 1. Given that repeating a grade at 15 has a different meaning depending on whether the adolescent has already repeated a grade or not²², we chose to focus on the subsample of 15 year olds that are on time in their schooling²³ at t (N = 5794).

This subsample is not representative of the total population of 15 year olds, and we have to control for the biases that could arise from endogenous selection. The simplest method is to introduce a supplementary control variable, which is correlated with the probability of being on time at 15, but uncorrelated with the current probability of moving up to the next grade. To address this issue, we have used the date-of-birth within the year as a supplementary control variable. The underlying assumption is that the date-of-birth within the year affects the probability of repeating a grade at early stages in schooling only.²⁴

Given that the date-of-birth within the year is not considered as an exogenous explanatory factor anymore, it is not possible to implement the Lewbel's semi-

²⁰Interestingly, the apparent effect of overcrowding on relatively poor 15- year olds seems smaller than on relatively rich ones. This is due to the fact that the vast majority of relatively poor adolescents have already been held back a grade.

²¹The minimum age for leaving school being 16, our dependent variable may slightly underestimate the actual proportion of adolescents who do not move up to the next grade. Generally speaking, it is because of this age limit that our paper focuses on 15 year olds.

²²Because teachers are required to limit the share of pupils that are two years behind.

 $^{^{23}}$ An alternative strategy is to consider all adolescents surveyed at t and t+1, to add a dummy indicating whether they are on time at t as a supplementary explanatory variable and to use the date-of-birth within the year as an instrumental variable for identifying the effects of being on time at t. This strategy provides us with similar estimates of the overcrowding effect. The drawback of this approach is that it assumes that the effects of overcrowding are the same for children who have already been held back as they are for those who have not.

²⁴As shown by our previous analysis, it has a strong effect on the probability of being held back. In this section, we assume that this is an effect on early schooling transitions only.

parametric estimator. To overcome this issue, we have relied on a simple linear probability model, similar to those implemented by Currie and Yelowitz (2001). Table 8 shows the OLS and IV estimations of this linear probability model as well as the results of a standard probit model.

The OLS specification (model 9) confirms that adolescents who live in overcrowded homes are much less likely to move up to the next grade than other adolescents, even after controlling for family size and family socioeconomic level. The OLS overcrowding effect (i.e., .08) is larger than the effect of sex and twice as large as the effect of family size. The IV effect is not estimated very precisely, but is much larger than the OLS effect. The OLS approach probably underestimates the true effect of overcrowding (and overestimates the true effect of family size), but it remains difficult to say exactly by how much.

All in all, we come to the same conclusion regardless of whether we focus on a cumulative or non-cumulative outcome: overcrowded housing is an important factor of performance at school and its effect is probably underestimated by naïve regressions, which neglect endogeneity and measurement issues.

5.5. Alternative Measurement for Parental Income

We have re-estimated models 1 through 8 on the sub-sample of adolescents from families where both parents are wage earners ("wage-earner" sample). This subsample contains about 15,000 observations. It is representative of a smaller population of adolescents than the "total" sample, but it has the advantage of giving a direct measurement for parental income. Generally speaking, the results are very similar to those obtained from the "total" sample, which is why we have not reported the results. For instance, the overcrowding effect is seven to ten times greater than that of the adolescent's sex (see Goux and Maurin, 2001).

We have also re-estimated models 3 through 8 using the two-sample instrumental variables technique (TSIV) developed by Angrist and Krueger (1992), and recently used by Currie and Yelowitz (2000). Again the results have not been reported, but are available on request. As Angrist and Krueger show, the TSIV estimator is adapted when a potentially endogenous, or poorly measured explanatory variable, is unavailable in the main sample (in our case, total parental income) even though (a) a group of instrumental variables capable of identifying the effects of this variable is available in the main sample, (b) an additional survey exists, which gives both the missing endogenous explanatory variable and its potential instruments. In our case, the application of this method requires using an additional survey to get information on the parents' wage- and non-wage-earning income, as well as on the instrumental variables used in this paper for identifying the effects of the endogenous regressors. We have used a data set that is the result of the matching of the Fiscal Income Surveys and the Labor Force Surveys carried out by INSEE in 1997 and 1998. The matching of these surveys is described in greater detail in Goux and Maurin (2001). This matching makes it possible to construct a sample that is representative of the total population of households, for which we know the total income (thanks to the Fiscal Income Surveys), and all the instrumental variables (thanks to the Labor Force Surveys). To test the consistency of our different approaches, we separately estimated a specific income effect for families with at least one non-wage earner and a specific income effect for wage-earning families (for which we have a direct income measurement).

The results obtained using this method are in accordance with those given in table 5. According to our TSIV estimator, growing up with several children per bedroom increases the probability of falling behind at school in proportions corresponding to about nine times the difference that exists between girls and boys. Comfortingly, we find about the same income effect for wage-earning and non-wage-earning families.

5.6. Overcrowded Housing and the Probability of Falling Behind: Estimation of Model (3.6)

To complete our analysis, we re-estimated the preceding models by introducing a dummy variable, whose value is 1 when the family lives in public housing (i.e., [Public=1]), as a supplementary explanatory variable (Table 9). This means estimating equation (3.6) and testing the assumption that it is not overcrowded housing in itself that causes academic failure, but the sector in which the overcrowded housing is situated.

When we consider the dummy variable [Public=1] as exogenous (see models 11 and 12),²⁵ its addition only marginally modifies the results from models 3 and 4. Once the effects of overcrowding, family size and parental income are taken into account, we only observe a very slight academic success differential between children living in public housing and the others. The high rate of academic failure that children from public housing experience reflects above all the poverty of their

 $^{^{25}}$ This is the case when all eligible households apply in order to obtain public housing and when the access to such housing is mostly a matter of income and luck.

families and their overcrowded living space.²⁶

When considering the choice of living in public housing as endogenous (models 13 and 14), the results are less precise, but continue to suggest that overcrowded housing in itself has a considerable impact on schooling.²⁷ The effect of living in public housing is three times smaller than the overcrowding effect, and not significantly different from zero at standard levels.

6. Single Room and Diploma

Table 10 presents the estimations carried out using the survey on schooling careers conducted in 1997. The advantage of this survey is that it gives more direct information on respondents' housing conditions during their childhood and makes it possible to identify the potential long-term effects on educational achievement. The dependent variable indicates if the individual dropped out of school before earning a diploma, while the central independent variable indicates if the individual had his or her own room at the age of 11. The disadvantage of this survey is that it is much smaller than the Labor Force Surveys and does not allow for as precise an identification of the structural parameters. When we restrict the analysis to the individuals who had at least one brother or sister, the sample only contains a little over 600 individuals.

These supplementary investigations tend, however, to confirm the diagnosis obtained using the Labor Force Surveys. The parametric specification shows that -controlling for the father's occupation and the number of siblings- individuals who have their own room during childhood had a much smaller probability than the others of dropping out of school before earning a diploma (model 15). Using Lewbel's semiparametric technique (with age as the auxiliary variable) and an OLS specification, we obtain the same basic results (model 16). The overcrowding effect is as strong as the effect of family size.

Using Lewbel's technique and an IV specification, we obtain results which are not very precise, which is not surprising given the small size of the sample (model 17). They suggest, however, that the true effect of housing conditions on the probability of dropping out of school before earning a diploma is undoubtedly higher than the effect estimated by the maximum likelihood or OLS techniques.

 $^{^{26}}$ These results go in the same direction as those recently obtained by Currie and Yelowitz (2000) using American data.

 $^{^{27}}$ The diagnosis is similar when we re-estimate models 10 through 16 by adding Public=1 as an endogenous regressor.

The estimated IV effect is 16 times greater than the effect of being one year older. The probability of dropping out of school before earning a diploma decreases by approximately 1/3 of a point per year (in our sample). This means that those who have their own rooms have a probability of dropping out of school that is on average about five points less than the others.

The differences between the OLS and the IV estimates are of the same magnitude as those obtained using the Labor Force Surveys in the previous subsections. Whether analyzing the probability of repeating a year or the probability of dropping out of school before earning a diploma, the raw effects definitely seem to systematically underestimate the causal effect of housing conditions.

7. Conclusion

Several results have come from our analysis. First, we found a very clear correlation between housing conditions during childhood and performance at school. Children who grow up in a home with at least two children per bedroom are both held back and drop out of school before earning a diploma much more often than other children. Second, we showed that this correlation between housing conditions and academic failure can only partially be explained by differences in income and the number of children between families. Ceteris paribus, children who grow up sharing a room with at least one sibling fall behind at school much more often than other children. Lastly, we developed a semi-parametric analysis that suggests that the link between housing conditions and academic failure is one of cause and effect. Altogether, we have an array of findings that indicate that public policy favoring the access of modest households to larger dwellings could have a substantial effect on educational inequalities.

Further research is necessary to really define a housing policy that could affect the poorest children's school performance. This research must rely on in-depth analysis of the effects of existing public policies that favor the housing of lowincome families.

References

 Angrist J. and W. Evans, 1998, Children and their Parents' labor Supply: Evidence from Exogenous Variations in Family Size, American Economic Review, 88:450-477.

- [2] Angrist J. and A. Krueger, 1992, The Effect of Age at School Entry on Educational Attainment: An Application of Instrumental Variables with Moments from Two Samples, *Journal of the American Statistical Association*, 418: 328-336.
- [3] Barker D.J., D. Coggon, C. Osmond and C. Whickham, 1990, Poor housing in childhood and high rates of stomach cancer in England and Wales, *British Journal of Cancer*, 61(4): 575-578.
- [4] Blau D., 1999, The Effect of Income on Child Development, The Review of Economics and Statistics, LXXXI (2): 261-277.
- [5] Blundell R. and J. Powell, 2000, Endogeneity in Nonparametric and Semiparametric Regression Models, Communication for the 8th World Congress of the Econometric Society.
- [6] Britten N., J.M. Davies and J.R. Colley, 1987, Early Respiratory Experience and Subsequent Cough and Peak Expiratory Flow Rate in 36 year Old Men and Women, *British Journal of Medicine*, 294: 1317-20.
- [7] Chambaz C., E. Maurin and C. Torelli, 1998, L'évaluation sociale des professions en France, *Revue Française de Sociologie*, 39(1): 177-199.
- [8] Chombart de Lauwe P.H., 1956, La vie quotidienne des familles ouvrières, Paris: CNRS.
- [9] Coggon D., D.J. Barker, M. Cruddas and R.H. Olivier, 1991, Housing and Appendicitis in Anglesey, *Journal of Epidemiology and Community Health*, 45: 244-6.
- [10] Coggon D., D.J. Barker, H. Inskip and G. Wield, 1993, Housing in early life and later mortality, *Journal of Epidemiology and Community Health*, 47: 345-348.
- [11] Deadman D.J., D. Gunnel, G.D. Smith and D. Frankel, 2001, Childhood housing conditions and later mortality in the Boy Orr cohort, *Journal of Epidemiology and Community Health*, 55: 10-15.
- [12] Currie J. and A. Yelowitz, 2000, Are Public Housing Projects Good for Kids? Journal of Public Economics, 75: 99-124.

- [13] Fuller T.D, J.N. Edwards, S. Sermsri and S. Vorakitphokatorn, 1993, Housing, stress, and physical well-being: evidence from Thailand, *Social Science Medicine*, 36 (11): 1417-1428.
- [14] Goux D. and E. Maurin, 2001, The Impact of Overcrowded Housing on Children's Performances at School, Unpublished manuscript, CREST, Malakoff.
- [15] Gove W., M. Hughes and O. Galle, 1979, Overcrowding in the Home: An Empirical Investigation of its Possible Pathological Consequences, American Sociological Review, 44: 59-80.
- [16] Lewbel A., 2000, Semiparametric Qualitative Response Model Estimation with Unknown Heteroscedasticity or Instrumental Variables, *Journal of Econometrics*, 97: 145-177.
- [17] Magnac T. and E. Maurin, 2002, Identification and Information in Monotone Binary Models, Unpublished Manuscript, CREST, Malakoff.
- [18] Mann S.L., M.E. Wadsworth and J.R. Colley, 1992, Accumulation of factors influencing respiratory illness in members of a national birth cohort and their offspring, *Journal of Epidemiology and Community Health*, 46: 286-292.
- [19] Maurin E., 2002, The Impact of Parental Income on Early Schooling Transitions: A Reexamination using Data over Three Generations, *Journal of Public Economics*, vol:85, pp: 301-332.
- [20] Mayer S., 1997, What Money Can't Buy: Family Income and Children's Life Chances, Cambridge MA: Harvard University Press.
- [21] Prescott E. and J. Vestbo, 1999, Socioeconomic status and chronic obstructive pulmonary disease, *Thorax*, 54: 737-741.
- [22] Rasmussen F.V., L. Borchsenius, J.B. Winslow and E.R. Ostergaard, 1978, Associations between housing conditions, smoking habits and ventilatory lung function in men with clean jobs, Scandinavian Journal of Respiratory Disease, 59: 264-76.
- [23] Rosenzweig M. and K. Wolpin, 2000, Natural Experiment in Economics, Journal of Economics Literature, 38(4) :827-874.
- [24] Shea J., 2000, Does Parents' Money Matter ?, Journal of Public Economics, 77: 155-184.

Appendix A

We assume that Q_i depends not only on x_i , u_i , N_i , L_i , but also on some of the expenses of children's education and development F_i . Under this assumption, equation (3.1) can be rewritten:

$$\ln Q_i = \alpha \ln L_i + \beta N_i + \delta \ln F_i + \gamma x_i + u_i.$$
(7.1)

and parents maximize:

$$\ln V_{i} = (1 - \rho(Z_{2i})) \ln U(C_{i}, L_{i}, Z_{1i}) + \rho(Z_{2i})(\alpha N_{i} \ln L_{i} + \delta \sum_{k=1}^{N_{i}} \ln F_{ik})$$

subject to: $C_{i} + q_{L}(N_{i} + 2)L_{i} + q_{F} \sum_{k=1}^{N_{i}} F_{ik} = R_{i}.$

Within this framework, the optimal level of expenses F_i is the same for all children and the first-order conditions can be written:

$$(1 - \rho(Z_{2i}))\frac{U'_{C}}{U} = \lambda, (1 - \rho(Z_{2i}))\frac{U'_{L}}{U} + \rho(Z_{2i})\alpha\frac{N_{i}}{L_{i}} = \lambda q_{L}(N_{i} + 2), \rho(Z_{2i})\frac{\delta}{F_{i}} = \lambda q_{F}N_{i}.$$

where λ represents the Lagrange multiplier. Assuming that U is homogenous of degree v, we have $U'_C C + U'_L L = v$ and the first-order conditions implies $\lambda = \frac{\rho(Z_{2i})N_i(\delta+\alpha)+v(1-\rho(Z_{2i}))}{R_i}$. Thus, the last first-order condition implies,

$$F_i = \frac{\delta \rho(Z_{2i})}{q_F(\rho(Z_{2i})N_i(\delta + \alpha) + \upsilon(1 - \rho(Z_{2i})))} R_i = f_i(N_i, Z_{2i})R_i.$$

The interesting point is that the share of educational expenses in total income $f_i(N_i, Z_{2i})$ varies with N_i and Z_{2i} , but not with the Z_{1i} variables, i.e. with the variables that specifically determine the trade-off between C_i and L_i . Within this framework, the equation determining educational outcome can be rewritten,

$$E_i = 1 \Leftrightarrow \alpha \ln L_i + \beta N_i + \gamma x_i + \delta \ln R_i + a_i + v_i < 0,$$

where the new residual $v_i = u_i + \delta \ln(f_i)$ is uncorrelated with the Z_{1i} variables. As a consequence, the effect of $\ln L_i$ on the probability of being held back can be identified by introducing $\ln R_i$ as a supplementary control variable an by using Z_{1i} variables as instruments.

Let us now assume that there exists two sectors A and B, such that the price of housing is lower in A than in B (i.e., $q_{LA} < q_{LB}$), but such that A is only for low-income families (i.e., only when $R_i < R_0$) and such that living in A implies a non-positive impact ϕ on children's development, meaning:

$$\ln Q_i = \alpha \ln L_i + \beta N_i + \delta \ln F_i - \phi P u b_i + \gamma x_i + u_i.$$
(7.2)

where Pub_i is a dummy variable with value 1 when the housing is in A.

Within this framework, the educational expenses ($F_i = f_i R_i$) do not depend on the sector chosen by the family. In contrast the optimal level of consumption and housing size depends on the sector. More specifically, given the homogeneity of U, when the family chooses k, the optimal consumption and housing size can be written as:

 $C_{ik}^* = c_i(q_{Lk})((1 - N_i f_i) R_i)^{1/(\nu(1 - \rho_i) + \rho_i N_i \alpha)},$ $L_{ik}^* = l_i(q_{Lk})((1 - N_i f_i) R_i)^{1/(\nu(1 - \rho_i) + \rho_i N_i \alpha)},$ and family *i* chooses A, if and only if: $(1 - \rho(Z_{2i}) \ln \frac{U(c_{Ai}^*, l_{Ai}^*, Z_{1i})}{U(c_{Bi}^*, l_{Bi}^*, Z_{1i})} + \rho(Z_{2i}) N_i(\alpha \ln \frac{l_{Ai}^*}{l_{Bi}^*} - \phi) > 0,$ where c_{ki}^* represents $c_i(q_{Lk})$ and l_{ki}^* represents $l_i(q_{Lk})$, which can be rewritten

as:

$$\phi < \frac{(1 - \rho(Z_{2i}))}{\rho(Z_{2i})N_i} \ln \frac{U(c_{Ai}^*, l_{Ai}^*, Z_{1i})}{U(c_{Bi}^*, l_{Bi}^*, Z_{1i})} + \alpha \ln \frac{l_{Ai}^*}{l_{Ai}^*}$$
(7.3)

This inequality simply means that eligible families choose A if and only if the negative direct impact on children's development ϕ is smaller than the positive impact on welfare, implied by the lower housing price.

Functional forms exist such that (when ϕ is sufficiently small) condition (7.3) is always true and eligible families all apply for housing in A. In such a case, the choice of housing sector only depends on income (eligibility condition). Once we control for the income effect, omitting Pub_i from our models does not generate specific endogeneity biases.

In general, the choice of A depends not only on R_i , but also on Z_{1i} and Z_{2i} . In such a case, the Pub_i variable is an endogenous determinant of performance at school, and it potentially has the same determinants as L_i .

Appendix B

	Potentially exogenous variables		
	[Overcrowded Housing=1]	[Nb siblings>2]	Father's socio- economic status
Intercept	-0.55	0.42	-0.41
	(0.02)	(0.03)	(0.02)
Sex of Two Oldest Siblings			
Two Boys	-0.02	0.01	0.01
	(0.03)	(0.03)	(0.02)
Boy +Girl	-0.07	-0.15	-0.01
	(0.03)	(0.03)	(0.02)
Girl + Boy	-0.10	-0.17	0.03
	(0.03)	(0.03)	(0.02)
Girl + Girl	Ref.	Ref.	Ref.
Difference in quarters of birth	-0.04	0.00	0.01
between the two oldest siblings	(0.01)	(0.01)	(0.01)
Absolute difference in parents'			
age	0.51	0.22	0.21
<2 years	-0.31	-0.33	0.31
2.5	(0.03)	(0.02)	(0.01)
2-3 years	-0.38	-0.26	0.19
-	(0.03)	(0.02)	(0.02)
>5 years	Ref.	Ref.	Ref.
Father's father = manager or			0.89
professional	-	-	(0.03)
Mother's father = manager or			0.72
professional	-	-	(0.03)
Number of Observations	19499	19499	19499

Table B1: Correlation between the Differences in Sex and Date of Birth of the Oldest

 Members of the Family and the Potentially Endogenous Explanatory Variables

Source : Labour Force Surveys, 1990 to 2000, Insee.

Field « Total » sample : Children who were born in t-15 and surveyed in t living in an intact family with two or more children.

	Potentially endogenous regressors	
	[Overcrowded Housing=1]	[Nb siblings>2]
Intercept	55	1.08
	(.02)	(0.06)
Mother's place of birth		
Parisian suburbs	Ref.	Ref.
Paris and large cities	84	35
-	(.08)	(.06)
Regions M1	52	38
-	(.07)	(.06)
Regions M2	73	54
	(.09)	(.07)
Regions M3	-1.12	66
	(.06)	(.05)
Regions M4	-1.81	72
	(.15)	(.07)
Father's place of birth		
Parisian suburbs	Ref.	Ref.
Paris and large cities	81	45
-	(.07)	(.06)
Regions P1	59	44
-	(.08)	(.06)
Regions P2	89	61
	(.06)	(.05)
Regions P3	-1.47	45
	(.10)	(.06)
Number of Observations	19,499	19,499

Table B2: Correlation between Parents' Places of Birth and the Potentially Endogenous Explanatory Variables

Source : Labour Force Surveys, 1990 to 2000, Insee.

Field « Total » sample : Children who were born in t-15 and surveyed in t living in an intact family with two or more children.

Definition of the dummies indicating mother's place of birth: Parisian suburbs correspond to departments 92, 91, 78, 93, 94, 95, 77; Paris and large cities correspond to departments 75, 59, 60, 13, Regions M1 correspond to departments 06, 11, 14, 20, 24, 28, 32, 37, 41, 52, 53, 55, 58, 62, 76, 80, 83, 89, 97, Regions M2 correspond to departments 04, 15, 16, 23, 33, 35, 46, 61, 72, 74, 79, 84, Regions M3 to departments 01, 29, 40, 43, 51, 54, 73, 82, 81, Regions M4 correspond to the remaining departments. **Definition of the dummies indicating father's places of birth**: Parisian suburbs correspond to departments 92, 91, 78, 93, 94, 95, 77, Paris and large cities correspond to departments 75, 59, 60, 13, Regions P1 correspond to 05, 06, 11, 24, 28, 47, 52, 53, 62, 68, 80, 89, 97, Regions P2 correspond to departments 01, 07, 18, 25, 26, 29, 31, 42, 4, 47, 50, 51, 56, 85, and Regions P3 to remaining departments.

Nb of children and sex differences between oldest siblings	Average number of hours spent at work (per week) by			Proportion mothers out of the labor force (%)
	Mothers	Fathers	Mothers+Fathers	
Two Children				
Same sex	34.6	43.0	67.4	19.7
Different sex	34.8	43.2	67.6	20.6
Three Children				
Same sex	32.2	43.0	60.3	36.8
Different sex	31.5	43.1	60.7	34.3
Four children or more				
Same sex	30.6	41.7	50.6	64.3
Different sex	30.7	41.6	49.7	65.5

Table B3: Average number of hours spent at work per week by parentsand proportion of mothers out of the labour force,by family size and sex differences between the oldest siblings

Source: Labor Force Surveys, 1990 to 2000, Insee.

Reading: Consider intact families with three children and such that the two oldest children are same sex. 36.8% of the mothers are out of the labor force. The average number of hours worked by fathers (mothers) is 43.0 (32.2).

	Number of Observations	Proportion held back (%)
Gender		
Male	10080	48.4
Female	9419	37.5
Family size		
1 or 2 children	8723	34.9
3 or more	10776	49.8
Family socio-economic		
level		
Q1	3106	61.3
Q2	5520	54.6
Q3	3206	44.4
Q4	3714	38.2
Q5	3953	18.0
Nb children/bedroom		
2 or more	3378	61.0
Less than 2	16121	39.4
Housing sector		
Public	3249	63.3
Private	16250	39.1
Quarter of birth		
1	4748	37.6
2	5149	40.4
3	4865	46.4
4	4737	48.3
Total	19,499	43.1

 Table 1: The Labour Force Surveys' Samples: Basic Statistics

Source : Labour Force Surveys, 1990 to 2000, Insee.

Field « Total » sample : Children who were born in t-15 and surveyed in t living in an intact family with two or more children.

Note: Family socio-economic level correspond to father's position on the French occupational prestige scale (Chambaz et al., 1998).

	Respondents with one or more sibling		
	Number of Observations	% without diploma	
Family size :			
3 or more siblings	359	32.6	
1 or 2	276	18.9	
Date of birth :			
Born after 1964	357	23.5	
Born before 1964	258	31.8	
Father's occupation :			
Manual Worker	279	33.8	
Non-manual	356	21.6	
Overcrowding :			
Own Room at 11	274	18.9	
No Own Room	341	33.4	
Total	615	26.9	

Table 2: The Survey on Educational and Occupational Career (1997) : Basic Statistics

Source: Survey on Educational and Occupational Career, 1997, INSEE.

		in %
	Overcrowded housing	Non overcrowded housing
<i>Relatively poor families</i> Siblings>2	68.1	58.4
Siblings=2	56.9	44.5
All	65.7	52.6
<i>Relatively rich families</i> Siblings>2	58.1	32.2
Siblings=2	36.1	26.8
All	49.5	29.3
<i>All families</i> Siblings>2	65.7	45.1
Siblings=2	47.9	33.4
All	61.0	39.4

Table 3: Overcrowded Housing and the Probability of Being Held Back: Basic Facts

Source : Labour Force Surveys, 1990 to 2000, Insee.

Field: Children who were born in t-15 and surveyed in t living in an intact family with two or more children.

Note: Relatively rich (poor) families are families which socio-economic level is above (below) the median of the distribution.

Reading : The probability of being held back is 68.1% in relatively poor, large and overcrowded families. In relatively rich, small and non-overcrowded families, the probability of being held back is 29.3%.

	Semiparametric binary models	
	OLS	IV
	(1)	(2)
Overcrowded housing	0.20 (0.01)	0.92 (0.24)
Number of siblings >2	0.11 (0.01)	-0.09 (0.07)
Male	0.10 (0.01)	0.10 (0.01)
Mean marginal effect of overcrowding on the prob. of being held back (percent point)	+3.6	+16.6
Number of Observations	19 499	19 499
Sargan Statistic (<i>p</i>)	-	4.5 (.11)

Table 4: The Impact of Overcrowded Housing on the Probability of being Held Back.An Estimation of Equation (3.3)

Source : Labour Force Surveys, 1990 to 2000, Insee.

Field : Children born in *t-15*, surveyed at *t*, living in an intact family with at least two children.

Note : The dependent variable corresponds to a dummy variable with value 1 when the child is behind at school. The regressions correspond to the implementation of Lewbel's semiparametric estimators with the date of birth within the year as an auxiliary variable. In the IV model, the dummy with value 1 when the housing is overcrowded and the dummy with value 1 when the number of children is greater or equal to 3 are assumed endogenous. The instruments are (a) three dummies indicating whether the two oldest siblings are two girls, two boys, one girl and one boy, (b) a variable which takes the values 0, 1 or 2 depending on the difference in quarters of birth between the two oldest siblings. The models also include an intercept, ten dummies indicating the date of survey and one dummy indicating whether the household is in the Paris region as supplementary exogenous regressors.

	Semiparametric binary models		
	OLS	IV	IV
	(3)	(4)	(5)
Overcrowded Housing	0.11	0.75	0.61
	(0.01)	(0.28)	(0.37)
Number of Siblings>2	0.08	-0.24	-0.20
	(0.01)	(0.20)	(0.21)
Socio-economic Status	-0.14	-0.10	-0.13
	(0.01)	(0.02)	(0.05)
Male	0.10	0.10	0.10
	(0.01)	(0.01)	(0.01)
Mean marginal effect of overcrowding on the prob. of being held back (percent point)	+2	+13.5	+11
Number of Observations	19499	19499	19499
Sargan Statistic	-	4.3	4.3
(p)		(0.36)	(0,50)

Table 5: The Impact of Overcrowded Housing on the Probability of Being Held Back.An Estimation of Equation (3.5)

Source : Labour Force Surveys, 1990 to 2000, Insee.

Field : Children born in *t-15*, surveyed at *t*, living in an intact family with at least two children.

Note : Same dependent variable, estimation techniques and non-reported independent variables as in table 4. In model (4), the dummy variable with value 1 when the housing is overcrowded and the dummy variable with value 1 when the number of children is greater or equal to 3 are assumed endogenous. In model (5), we assume that the socio-economic status is endogenous too. In model (4) we use the same instrumental variables as in model (2) as well as two dummies indicating whether the absolute age difference between the father and the mother is less than two years or between two and five years. In model (5), we use a set of dummies indicating whether the grand-fathers were managers and/or professionals as supplementary instrumental variables

Table 6: The Impact of Overcrowded Housing on the Probability of Being Held Back :A Re-estimation of Equation (3.5) using an Alternative Set of Instruments

	Semiparametric binary models		
	IV	IV	IV
	(6)	(7)	(8)
Overcrowded Housing	0.57	0.48	0.43
	(0.15)	(0.20)	(0.17)
Number of Siblings>2	-0.24	-0.20	-0.15
	(0.18)	(0.18)	(0.14)
Socio-economic Status	-0.12	-0.15	-0.16
	(0.01)	(0.03)	(0.03)
Male	0.10	0.10	0.10
	(0.01)	(0.01)	(0.01)
Marginal effect of overcrowding on the prob. of being held back (percent point)	+10.2	+8.7	+7.8
Number of Observations	19,499	19,499	19,499
Sargan Statistic	9.3	9.3	11.2
(p)	(0.23)	(0.32)	(0,42)

Source : Labour Force Surveys, 1990 to 2000, Insee.

Field :Children born in *t-15*, surveyed at *t*, living in an intact family with at least 2 children.

Note : Same dependent variables, estimation techniques and non-reported independent variables as in table 4. In model (6), the dummy variable with value 1 when the housing is overcrowded and the dummy variable with value 1 when the number of children is greater or equal to 3 are assumed endogenous. In model (7) and (8), we assume that the socioeconomic status is endogenous too. In model (6) we use a set of five dummies indicating mother's place of birth and a set of four dummies indicating father's places of birth as instrumental variables. In model (7) we use a set of dummies indicating whether the grand-fathers were managers and/or professionals as supplementary instrumental variables for identifying the effect of the socio-economic status. In model (8) we add the sex and season of birth differences between siblings and the absolute age difference between parents as supplementary instrumental variables

		in %
	Overcrowded Housing	Non-overcrowded housing
<i>Relatively poor families</i> Nb Siblings>2	33.0	28.7
Nb Siblings=2	27.2	25.0
All	31.7	27.1
<i>Relatively rich families</i> Nb Siblings>2	31.7	18.1
Nb Siblings=2	24.8	17.4
All	28.8	17.8
<i>All families</i> Nb Siblings>2	32.7	23.2
Nb Siblings=2	26.2	20.3
All	30.8	21.7

Table 7: Overcrowded Housing and the Probability of Repeating a Grade: Basic Facts

Source : Labour Force Surveys, 1990 to 2000, Insee.

Field: Children who were born in *t*-15 and surveyed in *t* and t+1, living in an intact family with two or more children.

Note: Relatively rich (poor) families are families which socio-economic level is above (below) the median of the distribution of permanent income.

Reading : The probability of repeating a grade is 33% in relatively poor, large and overcrowded families. In relatively rich, small and non-overcrowded families, the probability of repeating a grade is 17.8%.

Table 8: An Alternative Dependent Variable : the Impact of Overcrowded Housing on the
Probability of Repeating a Grade

	Linear Probability Model	
	OLS	IV
	(9)	(10)
Overcrowded Housing	.08	.48
	(.02)	(.22)
Number of Siblings>2	.04	14
C C	(.01)	(.17)
Socio-economic Status	09	07
	(.01)	(.01)
Male	.06	.06
	(.01)	(.01)
Date of Birth	002	001
	(.002)	(.002)
Number of Observations	5,794	5,794
Sargan statistic		2.9
(p)		(.81)

Source : Labour Force Surveys, 1990 to 2000, Insee.

Field : Children born in *t*-15, surveyed at t and t+1, on time at school and in an intact family with at least two children at t.

Note : The dependent variable is "to be in the same grade at t and t+1". Models 9 and 10 correspond to the OLS and IV linear regression of this dependent variable on the explanatory variables. The IV model assumes that both the family size and the overcrowded housing indicators are endogenous. The instruments correspond to the sex and season-of-birth differences between the two oldest siblings, the absolute age difference between parents and indicators of the places of birth of the two parents.

	Semiparametric binary models			
	OLS	IV	IV	IV
	(11)	(12)	(13)	(14)
Overcrowded Housing	0.10	0.49	0.44	0.35
	(0.01)	(0.12)	(0.20)	(0.21)
Number of Siblings>2	0.07	-0.20	-0.22	-0.17
	(0.01)	(0.12)	(0.13)	(0.13)
Socio-economic Status	-0.13	-0.11	-0.11	-0.15
	(0.01)	(0.01)	(0.01)	(0.03)
Male	0.10	0.10	0.10	0.10
	(0.01)	(0.01)	(0.01)	(0.01)
Public=1	0.10	0.07	0.15	0.11
	(0.01)	(0.02)	(0.25)	(0.24)
Marginal effect of overcrowding on				
the prob. of being held back (percent point)	+1.8	+8.8	+7.9	+6.3
Number of Observations	19499	19499	19499	19499
Sargan Statistic		15.9	15.9	14.7
(p)	-	(0.25)	(0.25)	(0.33)
ν.		· /		

Table 9: The Impact of Overcrowded Housing on the Probability of Being Held Back:An Estimation of Equation (3.6)

Source : Labour Force Surveys, 1990 to 2000, Insee.

Field : Children born in *t-15*, surveyed at *t*, living in an intact family with at least two children.

Note : Models (11) and (12) correspond to a re-estimation of models (3) and (4) with (Public=1) as a supplementary exogenous regressor. Model (13) corresponds to a re-estimation of model (12) when (Public=1) is considered as potentially endogenous. In model (14), family socio-economic status is considered as endogenous too. The instruments used for identifying the effect of overcrowding, family size and public housing are the following: sex and season-of-birth differences between oldest siblings, absolute age difference between parents, parents' places of birth. Family socio-economic status is instrumented with the same instruments as those used in model (7).

Table 10: The Effect of Having Ones Own Room at 11 on the Probability of Leaving School without Diploma

	Parametric Model	Semiparametric models		
	Probit	OLS	IV	
	(15)	(16)	(17)	
Intercept	2.32	-4.4	-0.2	
Own Room at age 11	-0.58	-1.7 (1.3)	-16.0 (14.3)	
Number of siblings >2	0.45 (0.19)	-1.8 (1.3)	-19.6 (21.1)	
Father=Manual Worker	0.54 (0.20)	2.9 (1.3)	2.8 (3.0)	
Father= Manager/Professional	0.19 (0.37)	1.6 (2.4)	0.4 (4.0)	
Age	0.76 (0.43)	-	-	
Number of observations	632	632	632	
Sargan Statistic (p)		-	1.24 (0.87)	

Source : Survey on Schooling and Occupational Career, 1997, Insee.

Field : Men, age 20-45, with at least one sibling.

Note The dependent variable corresponds to a dummy with value 1 when the individual has not earned any diploma before leaving school. Model (15) is a standard Probit model while models (16) and (17) are semiparametric models, estimated using Lewbel's technique, the date of birth being used as an auxiliary variable. Model (16) corresponds to an OLS specification, models (17) to an IV specification. In model (17), two regressors are assumed potentially endogenous : the dummy variable with value 1 when the individual had a room of his own when he was 11, and the family size indicator. The instrumental variables are : (a) three dummies indicating whether the two oldest siblings are two girls, two boys, one girl and one boy, (b) two dummies indicating whether the absolute age difference between the father and the mother is less than two years or between two and five years, (c) a variable which takes the values 0, 1 or 2 depending on the difference in quarters of birth between the two oldest siblings.