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We explore steady-state inequality in an intergenerational model with
altruistically linked individuals who experience privately observed taste
shocks. When the welfare function depends only on the initial gen-
eration, efficiency requires immiseration: inequality grows without
bound and everyone’s consumption converges to zero. We study other
efficient allocations in which the welfare function values future gen-
erations directly, placing a positive but vanishing weight on their wel-
fare. The social discount factor is then higher than the private one,
and for any such difference we find that consumption exhibits mean
reversion and that a steady-state, cross-sectional distribution for con-
sumption and welfare exists, with no one trapped at misery.

I. Introduction

Societies inevitably choose the inheritability of welfare. Some balance
between equality of opportunity for newborns and incentives for altru-
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istic parents is struck. In this paper, we explore how this balancing act
plays out to determine long-run inequality.

An important backdrop to this question is provided by Atkeson and
Lucas (1992). They study a model populated by infinitely lived agents
subject to idiosyncratic shocks that are private information. They reach
an extreme conclusion by proving an immiseration result: consumption
and welfare inequality should be perfectly inheritable and rise steadily
without bound, with everyone converging to absolute misery and a van-
ishing lucky fraction to bliss.1 We depart minimally from this framework
by adopting the same positive economic model, but using a slightly
different normative criterion. In a generational context, efficient allo-
cations for infinitely lived agents characterize the instance in which
future generations are not considered directly, but only indirectly through
the altruism of earlier ones. On the opposite side of the spectrum,
Phelan (2006) proposes a social planner with equal weights on all gen-
erations that avoids the immiseration result because any allocation that
leads everyone to misery actually minimizes the welfare criterion. Our
interest here is in exploring a large class of Pareto-efficient allocations
that also value future generations, but not equally. We place a positive
and vanishing Pareto weight on the expected welfare of future gener-
ations, which allows us to remain arbitrarily close to Atkeson-Lucas. As
this weight varies, we trace the Pareto frontier between Atkeson-Lucas
and Phelan.2

Our welfare criterion captures the idea that it is desirable to insure
the unborn against the luck of their ancestors or, equivalently, insure
the risk of which family they are born into—arguably, the biggest risk
in life. Formally, we show that it is equivalent to a social discount factor
that is higher than the private one. This relatively small change relative
to Atkeson-Lucas produces a drastically different result: long-run in-
equality remains bounded in the sense that a steady-state, cross-sectional
distribution exists for consumption and welfare. At the steady state, there
is social mobility and welfare remains above an endogenous lower
bound, which is strictly better than misery. This outcome holds however
small the difference between social and private discounting.

Our positive economy is identical to Atkeson-Lucas’s taste-shock setup.

1 This immiseration result is robust; it obtains invariably in partial equilibrium (Green
1987; Thomas and Worrall 1990), in general equilibrium (Atkeson and Lucas 1992), and
across environments with moral hazard regarding work effort or with private information
regarding preferences or productivity (Aiyagari and Alvarez 1995), and it requires very
weak assumptions on preferences (Phelan 1998).

2 To make the notion more familiar, note that in overlapping-generation models without
altruistic links, all market equilibria that are Pareto efficient place positive, direct weight
on future generations. Bernheim (1989) pointed out that in extensions of these models
that incorporate altruism, many Pareto-efficient allocations are not attainable by the
market.
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Each generation is composed of a continuum of individuals who live
for one period and are altruistic toward a single descendant. There is
a constant aggregate endowment of the only consumption good in each
period. Individuals are ex ante identical but experience idiosyncratic
shocks to preferences that are privately observed. Feasible allocations
must be incentive compatible and must satisfy the aggregate resource
constraint in all periods.

When only the welfare of the first generation is considered, the plan-
ning problem is equivalent to that of an economy with infinite-lived
individuals. Intuitively, immiseration then results because rewards and
punishments, required for incentives, are best delivered permanently
to smooth dynastic consumption over time. As a result, the consumption
process inherits a random-walk component that leads cross-sectional
inequality to grow without bound. This is consistent with a constant
aggregate endowment only if everyone’s consumption converges to zero.
As a result, no steady-state, cross-sectional distribution with positive con-
sumption exists.

Interpreted in the intergenerational context, this solution requires a
lockstep link between the welfare of parent and child. This perfect
intergenerational transmission of welfare improves parental incentives,
but it exposes future generations to the risk of their dynasty’s history.
Future descendants value insurance against the uncertainty of their an-
cestors’ past shocks, and our welfare criterion captures this.

When future generations are weighted in the social welfare function,
it remains optimal to link the fortunes of parents and children, but no
longer in lockstep. Rewards and punishments are distributed over all
future descendants, but in a front-loaded manner. This creates a mean-
reverting tendency in consumption—instead of a random walk—that is
strong enough to bound long-run inequality. The result is a steady-state
distribution for the cross section of consumption and welfare, with no
one at misery. Moreover, mean reversion ensures a form of social mo-
bility, so that families rise and fall through the ranks incessantly.

It is worth emphasizing that our exercise is not predicated on any
paternalistic concern that individuals do not discount the future ap-
propriately. Rather, the difference between social and private discount-
ing used in our Pareto-efficient analysis arises because the social welfare
function gives direct weight to future generations. However, our formal
analysis can be applied whatever the motivation, paternalistic or not,
for a difference in social and private discounting. For example, Caplin
and Leahy (2004) make a case for a higher social discount factor within
a lifetime.

A methodological contribution of this paper is to reformulate the
social planning problem recursively in a way that extends the ideas
introduced by Spear and Srivastava (1987) to a general-equilibrium sit-
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uation in which private and social objectives potentially differ. We are
able to reduce the dynamic program to a one-dimensional state variable,
and our analysis and results heavily exploit the resulting Bellman
equation.

The paper most closely related to ours is Phelan (2006), which con-
sidered a social planning problem with no discounting of the future.
Phelan shows that if a steady state for the planning problem exists, then
it must solve a static maximization problem, and solutions to this prob-
lem have strictly positive inequality and social mobility. Our paper es-
tablishes the existence of a steady-state distribution for any difference
in social and private discounting. In contrast to the case with no dis-
counting, there is no valid static problem, so our methods are necessarily
different. Our work is also indirectly related to that of Sleet and Yeltekin
(2004), who study a utilitarian planner that lacks commitment and al-
ways cares for the current generation only. The best equilibrium allo-
cation without commitment is equivalent to the optimal one with com-
mitment but with a more patient welfare criterion. Thus our approach
and results provide an indirect, but effective, way of characterizing the
problem without commitment and establishing the existence of a steady-
state distribution. In effect, lack of commitment, or other political econ-
omy considerations, can provide one motivation for the positive Pareto
weights that future generations command.

The rest of the paper is organized as follows. Section II contains some
simple examples to illustrate why weighing future generations leads to
a higher social discount factor and why mean-reverting forces emerge
from any difference between social and private discounting. Section III
introduces the economic environment and sets up the social planning
problem. In Section IV, we develop a recursive version of the planning
problem and establish its relation to the original formulation. The re-
sulting Bellman equation is then used in Section V to characterize the
mean reversion in the solution. Sections VI and VII prove and discuss
the main results on the existence of a steady state for our planning
problem. Section VIII offers some conclusions from the analysis. Proofs
are contained in the Appendix.

II. Social Discounting and Mean Reversion

In this section, we preview the main forces at work in the full model
using a simple deterministic example. We first explain why weighing
future generations maps into lower social discounting. We then show
how this affects the optimal inheritability of welfare across generations.
Finally, we relate the latter to the mean reversion force, which guarantees
a steady-state distribution with social mobility in the full model. Our
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discussion also provides a novel intuition for the immiseration result in
Atkeson-Lucas.

Social Discounting

Imagine a two-period deterministic economy. The parent is alive in the
first period, , and is replaced by a single child in the next, .t p 0 t p 1
The child derives utility from his own consumption, so that v p1

. The parent cares about her own consumption but is also altruisticU(c )1

toward the child, so that her welfare is v p U(c ) � bv p U(c ) �0 0 1 0

.bU(c )1

A welfare criterion that weighs both agents and serves to trace out
the Pareto frontier between and is , for some weightv v W { v � av0 1 0 1

. Equivalently,a ≥ 0

ˆW p U(c ) � (b � a)U(c ) p U(c ) � bU(c ),0 1 0 1

with the social discount factor given by .b̂ { b � a

The only difference between the welfare criterion and the objective
of the parent is the rate of discounting. Social discounting depends on
the weight on future generations a. When no direct weight is placed
on children, so that , social and private discounting coincide,a p 0

, which is the case covered by Atkeson and Lucas (1992). When-b̂ p b

ever children are counted directly in the welfare criterion, , societya 1 0
discounts less than parents do privately, . The child’s consumptionb̂ 1 b

receives more weight in the welfare criterion because it is a public good
that both generations enjoy.

A Planning Problem

In Section III we show that the calculations above generalize to an
infinite-horizon economy and lead to an objective with more patient
geometric discounting: . We now consider a simple planning� tˆ� b u(c )ttp0

problem for such an infinite-horizon version.
Now, suppose that there are two dynasties, A and B. In each period,

a planner must divide a fixed endowment 2e between the two dynasties,
giving to A and to B. Suppose that, for some reason,c c p 2e � cA,t B,t A,t

the heads of the dynasties are promised differential treatment, so that
the difference in their welfare must be D. The planner’s problem is

�

1 1tˆmax b [ U(c ) � U(2e � c )]� A,t A,t2 2
tp0{c }A,t



370 journal of political economy

subject to

� �

t tbU(c ) � bU(2e � c ) p D.� �A,t A,t
tp0 tp0

The first-order conditions for an interior optimum are

′ tˆU (c ) 1 � l(b/b)A,t p , t p 0, 1, … ,′ tˆU (c ) 1 � l(b/b)B,t

where l is the Lagrange multipliers on the constraint.

Imperfect Inheritability

Suppose that the founder of dynasty A has been promised higher welfare
so that . The first-order condition then reveals that everyD 1 0 l 1 0

member of dynasty A enjoys higher consumption, . If , asˆc 1 c b p bA,t B,t

in Atkeson and Lucas (1992), consumption is constant over time for
both groups, and initial differences persist forever. The unequal prom-
ises to the first generation have a permanent impact on their descen-
dants. The inheritability of welfare across generations is perfect: the
consumption and welfare of the child move one-to-one with the parent’s
welfare.

In contrast, when , the difference in consumption between theb̂ 1 b

two dynasties shrinks over time. Consumption declines across genera-
tions for group A and rises for group B. The inheritability of welfare
across generations is imperfect: a child’s consumption varies less than
one-for-one with the parent’s. Indeed, initial differences completely van-
ish asymptotically—initial inequality dies out. Figure 1 illustrates these
dynamics for consumption.

In this simple deterministic example, initial inequality D was taken as
exogenously given. However, in the model with taste shocks, inequality
is continuously generated in order to provide incentives. The dynamics
after a shock are similar to those illustrated here, so that figure 1 can
be loosely interpreted as an impulse response function. If , shocksb̂ p b

have a permanent effect on inequality and consumption inherits a
random-walk component. If , the impact of shocks decays over timeb̂ 1 b

and consumption is mean-reverting.
As long as , inequality vanishes in the long run in this deter-b̂ 1 b

ministic example. With ongoing taste shocks, inequality remains positive
in the long run and the mean-reverting force ensures that inequality
remains bounded. By contrast, when as in Atkeson and Lucasb̂ p b

(1992), there is no mean reversion, so that shocks accumulate indefi-
nitely and inequality increases without bound.
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Fig. 1.—Consumption paths for groups A and B. Solid lines represent the case with
; the dotted line at is the steady state. The horizontal dashed lines representb̂ 1 b c p e p 1

the Atkeson-Lucas case with .b̂ p b

III. An Intergenerational Insurance Problem

At any point in time, the economy is populated by a continuum of
individuals who have identical preferences, live for one period, and are
replaced by a single descendant in the next. Parents born in period t
are altruistic toward their only child, and their welfare satisfiesvt

v p � [vU(c ) � bv ],t t�1 t t t�1

where is the parent’s own consumption, is the altruisticc ≥ 0 b � (0, 1)t

weight placed on the descendant’s welfare , and is a tastev v � Vt�1 t

shock that is assumed to be identically and independently distributed
across individuals and time. We make the following assumption.

Assumption 1. (a) The set of taste shocks V is finite. (b) The utility
function is concave and continuously differentiable for withU(c) c 1 0

and .′ ′lim U (c) p � lim U (c) p 0cr0 cr�

This specification of altruism is consistent with individuals having a
preference over the entire future consumption of their dynasty given
by

�

sv p b � [v U(c )]. (1)�t t�1 t�s t�s
sp0

In each period, a resource constraint limits aggregate consumption to
be no greater than some constant aggregate endowment .e 1 0

The following notation and conventions will be used. We refer to
as utility and the discounted, expected utility as welfare. LetU(c ) vt t

denote the probability of ; we adopt the normalization thatp(v) v � V
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and define and . The cost�[v] p � vp(v) p 1 v p max V v p min Vv�V

function is defined as the inverse of the utility function:C(u) C {
. Dynastic welfare belongs to the set with extremes�1U v U(� )/(1 � b)t �

and , which may be finite or¯v { U(0)/(1 � b) v { lim U(c)/(1 � b)cr�

infinite.
Taste shock realizations are privately observed, so any mechanism for

allocating consumption must be incentive compatible. The revelation
principle allows us to restrict attention to mechanisms that rely on truth-
ful reports of these shocks. Thus each dynasty faces a sequence of con-
sumption functions , where represents an individual’s consump-t{c } c(v )t t

tion after reporting the history . It is more convenienttv { (v , v , … , v)0 1 t

to work with the implied allocation for utility with t{u } u (v ) {t t

. A dynasty’s reporting strategy is a sequence of functionstU(c(v )) j { {j }t t

that maps histories of shocks into a current report . Anyt�1 t ˆj : V r V v vt t

strategy j induces a history of reports . We use tot t�1 t�1j : V r V j*
denote the truth-telling strategy with for all .t t t�1j*(v ) p v v � Vt t

We identify each dynasty with its founder’s welfare entitlement v. We
assume, without loss of generality, that all dynasties with the same en-
titlement v receive the same treatment. We then let w denote a cu-
mulative distribution function for v across dynasties. An allocation is a
sequence of functions for each v. For any given initial distributionv{u }t

of entitlements w and resources e, we say that an allocation is feasiblev{u }t

if (i) it delivers expected utility of v to all initial dynasties entitled to v:

�

t v t tv p b vu (v ) Pr (v ); (2)� � t t
t t�1tp0 v �V

(ii) it is incentive compatible for all v:

�

t v t v t t tb v[u (v ) � u (j (v ))] Pr (v ) ≥ 0 for all j (3)� � t t t
t t�1tp0 v �V

whenever this sum converges; and (iii) total consumption does not ex-
ceed the fixed endowment e in all periods:

v t tC(u (v )) Pr (v )dw(v) ≤ e, t p 0, 1, … . (4)�� t
t t�1v �V

Define to be the lowest endowment e such that there exists ane*(w)
allocation satisfying (2)–(4), which is precisely the efficiency problem
studied in Atkeson and Lucas (1992).
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Social Discounting

We have adopted the same preferences, technology, and informational
assumptions as in Atkeson and Lucas (1992). Our only departure is to
introduce the planning objective

�

tb̂ � [vU(c )] (5)� �1 t t
tp0

for each dynasty, which is equivalent to the preferences in (1), except
for the discount factor . Our motivation for this objective is thatb̂ 1 b

it can be derived from a welfare criterion that places direct weight on
the welfare of future generations. To see this, consider the sum of ex-
pected welfare, , using strictly positive weights :� v {a }�1 t t

� �

a � v p d � [vU(c )], (6)� �t �1 t t �1 t t
tp0 tp0

where . Then the discount factort t�1 …d { b a � b a � � ba � at 0 1 t�1 t

satisfies

d at�1 t�1p b � 1 b,
d dt t

so that social preferences are more patient. Future generations are al-
ready indirectly valued through the altruism of the current generation.
If, in addition, they are also directly included in the welfare function,
the social discount factor must be higher than b.3

In particular, weighing future generations with geometrict p 1, 2, …
Pareto weights givestˆa p bt

� �1 tˆa � v p b � [vU(c )] � v (7)� �t �1 t �1 t t 0{ }ˆtp1 tp0b � b

for . The first term is identical to the expression in (5); the secondb̂ 1 b

is a constant when initial welfare promises for the founding gener-v 0

ation are given, as they are in the social planning problem defined below.

Planning Problem

Define the social optimum as a feasible allocation that maximizes the
integral of (5) with respect to distribution w. That is, the social planning

3 Bernheim (1989) performs similar intergenerational discount factor calculations in
his welfare analysis of a deterministic dynastic saving model. Caplin and Leahy (2004)
argue that these ideas also apply to intrapersonal discounting within a lifetime, leading
to a social discount factor that is greater than the private one not only across generations
but within generations as well.
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problem given an initial distribution of welfare entitlements w and an
endowment level e is

�

t v t tˆS(w; e) { sup b vu (v ) Pr (v )dw(v) (8)� �� t t
t t�1v tp0 v �V{u }t

subject to (2), (3), and (4). The constraint set is nonempty as long as
. If , then the only feasible allocation is the one char-e ≥ e*(w) e p e*(w)

acterized by Atkeson-Lucas; we study cases with . This probleme 1 e*(w)
is convex: the objective is linear, constraints (2) and (3) are linear, and
the resource constraints (4) are strictly convex.

The way we have defined the social planning problem imposes that
initial welfare entitlements v be delivered exactly, in the sense that the
promise-keeping constraints (2) are equalities instead of inequalities.
Alternatively, suppose that the founder of each dynasty is indexed by
some minimum welfare entitlement , with distribution . The Pareto˜ṽ w

problem maximizes the integral of the welfare criterion (7) subject to
delivering or more to the founders and incentive compatibility. Theṽ
two problems are related: the solution to the Pareto problem solves the
social planning problem for some distribution w that first-order sto-
chastically dominates (so that for all v). In particular,˜ ˜w w(v) ≤ w(v)
comparing the terms in (7) with (5) implies that the Pareto problem
chooses w to maximize

S(w; e) � vdw(v) (9)�
subject to for all v. In general, depending on the given˜w(v) ≤ w(v)

, the constraints of delivering the initial welfare entitlements or˜ ˜w v
more may be slack, so that may be optimal. However, we shall˜w ( w

show that setting is optimal for initial distributions of entitle-˜w p w

ments that are steady states, as defined below. Our strategy is tow̃

solve the social planning problem and then show that it coincides
with the Pareto problem’s solution in Section VII.

Steady States

The social planning problem takes the initial distribution of welfare
entitlements w as given. In later periods the current cross-sectional dis-
tribution of continuation welfare is a sufficient statistic for the re-wt

maining social planning problem: the problem is recursive with state
variable . It follows that the solution to the social planning problemwt

from any period t onward, , is a time-independent function ofv �{u }t�s sp0
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the current distribution , which evolves according to a stationary re-wt

cursion , for some fixed mapping W.w p Wwt�1 t

We focus on distributions of welfare entitlements such that thew*
solution to the social planning problem features, in each period, a cross-
sectional distribution of continuation utilities that is also distributedvt

according to . In this case, the cross-sectional distribution of con-w*
sumption also replicates itself over time. We term any distribution of
entitlements with these properties a steady state. A steady state cor-w*
responds to a fixed point of this mapping, .w* p Ww*

In the Atkeson-Lucas case, with , the nonexistence of a steadyˆb p b

state with positive consumption is a consequence of the immiseration
result: starting from any nontrivial initial distribution w and resources

, the sequence of distributions converges weakly to the distri-e p e*(w)
bution having full mass at misery , with zero con-v p U(0)/(1 � b)
sumption for everyone. We seek nontrivial steady states that exhaustw*
a strictly positive aggregate endowment e in all periods.

Using the entire distribution as a state variable is one way to ap-wt

proach the social planning problem. Indeed, this is the method adopted
by Atkeson and Lucas (1992). They were able to keep the analysis man-
ageable, despite the large dimensionality of the state variable, by ex-
ploiting the homogeneity of the problem with constant relative risk
aversion (CRRA) preferences. In contrast, even in the CRRA case, our
model lacks this homogeneity, making such a direct approach intrac-
table.4 Consequently, in the next section, we attack the problem differ-
ently, using a dynamic program with a one-dimensional state variable.5

The idea is that the continuation welfare of each dynasty follows avt

Markov process and that steady states are invariant distributions of this
process.

IV. A Bellman Equation

In this section we approach the social planning problem by studying a
relaxed version of it, whose solution coincides with that of the original
problem at steady states. The relaxed problem has two important ad-
vantages. First, it can be solved by studying a set of subproblems, one
for each dynasty, thereby avoiding the need to keep track of the entire
distribution in the population. Second, each subproblem admits awt

4 Indeed, the homogeneity in Atkeson-Lucas is intimately linked to their immiseration
result: it implies that rewards and punishments are permanent and are delivered by shifting
the entire sequence of consumption up or down multiplicatively. In our case, even with
CRRA preferences, homogeneity breaks down and mean reversion emerges, preventing
immiseration.

5 A similar approach is taken in Aiyagari and Alvarez (1995), Atkeson and Lucas (1995),
and others.
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one-dimensional recursive formulation, which we are able to charac-
terize quite sharply. We believe that the general route we develop here
may be useful in other contexts.

Define a relaxed planning problem by replacing the sequence of resource
constraints (4) in the social planning problem (8) with a single inter-
temporal constraint

� �

v t tQ C(u (v )) Pr (v )dw(v) ≤ e Q (10)� � �� t t t
t t�1tp0 v �V tp0

for some positive sequence with . One can interpret this�{Q } � Q ! �t ttp0

problem as representing a small open economy facing intertemporal
prices .6 The original and relaxed versions of the social planning{Q }t
problem are related in that any solution to the latter that happens to
satisfy the resource constraints (4) is also a solution to the former.7 It
follows that any steady-state solution to the relaxed problem is a steady-
state solution to the original one, since at a steady state the intertemporal
constraint (10) implies the resource constraints (4). A steady state re-
quires .tˆQ p bt

Consider then the intertemporal resource constraint (10) with
:tˆQ p bt

� �

t v t t tˆ ˆb C(u (v )) Pr (v )dw(v) ≤ e b . (11)� � �� t
t t�1tp0 v �V tp0

Letting h denote the multiplier on this constraint, we form the Lagrang-
ian (omitting the constant term due to e)

vL { Ldw(v), (12)�
where

�

v t v t v t tˆL { b [vu (v ) � hC(u (v ))] Pr (v ).� � t t t
t t�1tp0 v �V

6 This is related to the decentralization result in Atkeson and Lucas (1992, sec. 7, the-
orem 1), although they do not use it, as we do here, to characterize the solution.

7 Since the problem is convex, a Lagrangian argument establishes the converse: there
must exist some positive sequence such that the solution to the original social planning{Q }t
problem also solves the relaxed problem. This is analogous to the second theorem of
welfare economics for our environment. However, we will not require this converse result
to construct a steady-state solution.
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We study the maximization of subject to (2) and (3). MaximizingL L
is equivalent to the pointwise optimization of for each v:vL

vk(v) { supL (13)
v{u }t

subject to (2) and (3). We call this subproblem, for a given v and h,
the component planning problem. Its connection with the relaxed problem
is that for any e there exists a positive multiplier h such that an allocation

solves the relaxed planning problem with endowment e if and onlyv{u }t

if for each v the allocation solves the component planning problemv{u }t

given v and h (Luenberger 1969, chap. 8).
Our first result characterizes the value function , defined from ak(v)

sequence problem, showing that it satisfies a Bellman equation.
Theorem 1. The value function of the component planning prob-

lem defined by equation (13) is continuous, is concave, and satisfiesk(v)
the Bellman equation

ˆk(v) p max �[vu(v) � hC(u(v)) � bk(w(v))] (14)
u,w

subject to

v p �[vu(v) � bw(v)] (15)

and

′ ′ ′vu(v) � bw(v) ≥ vu(v ) � bw(v ) for all v, v � V. (16)

This recursive formulation imposes a promise-keeping constraint (15)
and an incentive constraint (16). The latter rules out one-shot deviations
from truth-telling, guaranteeing that telling the truth today is optimal
if the truth is told in future periods, which is necessary for full incentive
compatibility (3). Full incentive compatibility (3) is taken care of in
(14) by evaluating the value function defined from the sequence prob-
lem at the continuation welfare: in the next period, envision the planner
as solving the remaining sequence problem, selecting an allocation for
each that is incentive compatible for . Then any pairw(v) t p 1, 2, …

that satisfies (15) and (16), pasted with the corresponding(u(v), w(v))
continuation allocations for each , describes an allocation that sat-w(v)
isfies (2) and (3).

Among other things, theorem 1 shows that the maximization on the
right-hand side of the Bellman equation is uniquely attained by some
continuous policy functions and for u and w, respectively.u wg (v, v) g (v, v)
We emphasize that these policy functions solve the maximization in the
Bellman equation (14) using the value function defined from thek(v)
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sequence problem (13).8 For any initial welfare entitlement v, an allo-
cation can then be generated from the policy functions byu w{u } (g , g )t

, with and . Our nextt u t�1 t w t�1u (v ) p g (v , v(v )) v p v v (v ) p g (v , v(v ))t t t 0 t�1 t t

result provides a connection between allocations generated this way and
solutions to the component planning problem (13).

Theorem 2. For any (v, h), if an allocation attains the maximum{u }t
in the component planning problem (13), then it is generated by

. Conversely, if an allocation generated by is suchu w u w(g , g ) {u } (g , g )t

that for each j

t t�1 t�1lim sup � b v(j (v )) ≥ 0, (17)�1 t
tr�

then it attains the maximum in the component planning problem (13).
The first part of theorem 2 implies either that the solution to the

relaxed planning problem is generated by the policy functions or that
there is no solution at all. From the second part of theorem 2, a solution
is guaranteed if the limiting condition (17) can be verified. The proof
proceeds by showing that the allocation generated by the policy func-
tions is optimal if it satisfies the incentive compatibility constraint (3);
the role of the limiting condition (17) is to ensure the latter.9 Conditions
(15) and (16) ensure that finite deviations from truth-telling are not
optimal; condition (17) then rules out infinite deviations. Condition
(17) is trivially satisfied for utility functions that are bounded below;
proposition 5 below verifies this condition when utility is unbounded
below.

V. Mean Reversion

In this section we use the Bellman equation to characterize the solution
to the planning problem and to show that it displays mean reversion.
Our first result establishes that is differentiable and strictly concavek(v)
with an interior peak.

8 If one assumes bounded utility, then when the contraction mapping theorem is applied,
the Bellman equation is guaranteed to have a unique solution, which must then coincide
with defined from the sequence problem. However, we do not assume bounded utilityk(v)
and, for our purposes, find it unnecessary to solve fixed points of the Bellman equation
or prove that it has a unique solution. Instead, we work directly with defined fromk(v)
the sequence problem (13) and simply exploit the fact that this function satisfies the
Bellman equation.

9 The proof of theorem 2 applies versions of the principle of optimality to verify incentive
compatibility. In particular, for any ( , ) and an initial , a dynasty faces a recursiveu wg g v0

dynamic programming problem with state variable and with the report as the control.ˆv vt t

Conditions (15) and (16) then amount to guessing and verifying a solution to the Bellman
equation of the agent’s problem, i.e., that the identity function satisfies the Bellman
equation with truth-telling. The limiting condition (17) then verifies that this represents
the dynasty’s value from the sequential problem.
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Proposition 1. The value function is strictly concave; it isk(v)
differentiable on the interior of its domain, with . If′lim k (v) p ��vrv̄

utility is unbounded below, then . Otherwise′lim k (v) p 1vrv—
.′lim k (v) p �vrv—

The shape of the value function is important because mean reversion
occurs toward the interior peak, as we show next.

Let l be the multiplier on the promise-keeping constraint (15) and
let be the multipliers on the incentive constraints (16). The′m(v, v )
first-order condition for isu(v)

′ u ′ ′ ′[v � hC (g (v, v))]p(v) � vlp(v) � vm(v, v ) � v m(v , v) ≤ 0,� �
′ ′v �V v �V

with equality if is interior. Given the limits for in propositionu ′g (v, v) k (v)
1, the solution for must be interior and satisfy the first-orderw(v)
condition

′ w ′ ′b̂k (g (v, v))p(v) � blp(v) � b m(v, v ) � b m(v , v) p 0.� �
′ ′v �V v �V

Incentive compatibility implies that is nondecreasing as a func-ug (v, v)
tion of v; similarly, is nonincreasing in v. Using the envelopewg (v, v)
condition and summing over v, we get′k (v) p l

b′ w ′k (g (v, v))p(v) p k (v). (18)� ˆ
v�V b

In sequential notation, this condition is

b′ ′� [k (v )] p k (v ), (19)t�1 t�1 t
b̂

where is generated by the policy function . Since , thet�1 w ˆ{v(v )} g b/b ! 1t

Markov process regresses toward zero. By proposition 1, the value′{k (v )}t

function has an interior maximum at , where , that is′k(v) v* k (v*) p 0
strictly higher than misery . Reversion occurs toward this interior point.v

To provide incentives, the planner rewards the descendants of an
individual reporting a low taste shock. Rewards can take two forms, and
it is optimal to make use of both. The first is standard and involves
spending more on a dynasty in present-value terms. The second is more
subtle and exploits differences in preferences: it is to allow an adjust-
ment in the pattern of consumption, for a given present value, in the
direction preferred by individuals relative to the planner.10 Since indi-

10 Some readers may recognize this last method as the time-honored system of rewards
and punishments used by parents when conceding their child’s favorite snack or reducing
their television time. In these instances, the child values some goods more than the parent
wishes, and the parent uses them to provide incentives.



380 journal of political economy

viduals are more impatient than the planner, this form of reward is
delivered by tilting the consumption profile toward the present. Earlier
consumption dates are used more intensively to provide incentives: re-
wards and punishments are front-loaded.

Economically, this mean reversion implies an interesting form of so-
cial mobility. Divide the population into two, those above and those
below . Then mobility is ensured between these groups: descendantsv*
of individuals with current welfare above will eventually fall below it,v*
and vice versa. This rise and fall of families illustrates one form of
intergenerational mobility.

It is convenient to reexpress equation (19) as

b b′ ′� [1 � k (v )] p [1 � k (v )] � 1 � , (20)t�1 t�1 tˆ ˆb b

so that the stochastic process reverts toward one. Our next′{1 � k (v )}t

result derives upper and lower bounds for the evolution of this process.
Proposition 2. For ,′1 � k (v) ≥ 0

b b′ ′ w ′g[1 � k (v)] � 1 � ≤ 1 � k (g (v, v)) ≤ g[1 � k (v)] � 1 � (21)( ) ( )ˆ ˆb b

for some constants and with and , as .ˆ ˆg g g ≤ b/b ≤ g g g r b/b v/v r 1
Moreover, consumption is zero if and only if .u ′C(g (v, v)) 1 � k (v) ≤ 0

The bounds in (21) are instrumental in proving that a steady-state
distribution exists, but they also illustrate a powerful force away from
misery. Proposition 2 can be seen as providing a corridor around
the expected value for the realization′ˆ ˆ(b/b)[1 � k (v)] � 1 � (b/b)

. This corridor becomes narrower as is decreased′ w ′1 � k (g (v, v)) 1 � k (v)
and shrinks to zero as . This implies that welfare must rise,′1 � k (v) r 0
for all realized shocks, if current welfare is low enough. Indeed, if utility
is unbounded below, then next period’s welfare remainswg (v, v)
bounded even as . No matter how badly a parent is to be pun-v r ��
ished, the child is always somewhat spared.

When the solution for is interior,u(v)

′ u ′h C (g (v, v))p(v) p 1 � k (v).�
v�V

Equation (20) then implies

1 b 1 b 1
� p � � 1 � .t�1 t�1′ ′ ( )[ ] [ ]ˆ ˆU (c ) U (c ) hb bt�1 t

For example, in the logarithmic utility case, , implying that′1/U (c) p c
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the one-step-ahead forecast for consumption mean-revertsx p � [c ]t t�1 t

at rate toward its mean, . That is,�1ˆb/b h

b b 1
� [x ] p x � 1 � .t�1 t t�1 ( )ˆ ˆ hb b

Moreover, if the amplitude of taste shocks is not too wide, we can guar-
antee that and . If , then the ergodic set for is′g ! 1 g 1 0 g ! 1 1 � k (v)
bounded above, implying that welfare is bounded away from ;¯v vt

whereas if , then the ergodic set for is bounded away from′g 1 0 1 � k (v)
zero and consumption is bounded away from zero. In this way, one can
guarantee that inequality of welfare and consumption remains bounded.

VI. Existence of a Steady State

In this section we show that a steady-state invariant distribution exists.
The proof relies on the mean reversion in equation (19) and the bounds
in proposition 2.

Proposition 3. The Markov process implied by has an in-w{v } gt

variant distribution with no mass at misery andw* w*(v) p 0
if any of the following conditions holds: utility is un-′∫ k (v)dw*(v) p 0

bounded below, utility is bounded above, , or .g ! 1 g 1 0
When any of the conditions of proposition 3 are satisfied, theorem

2 leaves open only two possibilities. Either the social planning problem
admits a steady-state invariant distribution or no solution exists. This
contrasts with the Atkeson-Lucas case, with , where a solutionˆb p b

exists but does not admit a steady state. Later in this section we verify
the second part of theorem 2 to confirm that a solution to the social
planning problem can be guaranteed and a steady state exists.

Our Bellman equation also provides an efficient way of solving the
planning problem. We illustrate this with two examples, one analytical
and another numerical.

Example 1. Suppose that utility is CRRA with , so thatj p 1/2
for and for . Atkeson-Lucas show1/2 1/2 2U(c) p 2 c c ≥ 0 C(u) p u /2 u ≥ 0

that for the optimum involves consumption inequality growingˆb p b

without bound and leading to immiseration.
The Bellman equation for isb̂ 1 b

h 2 ˆk(v) p max � vu(v) � u(v) � bk(w(v))[ ]2u,w

subject to (15) and (16). If we ignore the nonnegativity constraints on
u and w, this is a linear-quadratic dynamic programming problem, so
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Fig. 2.—Invariant distributions for welfare, measured in consumption-equivalent units
, for various values of .ˆC((1 � b)v) b

the value function is a quadratic function and the policy functionsk(v)
are linear in v:

u u ug (v, v) p g (v)v � g (v)1 0

and

w w wg (v, v) p g (v)v � g (v).1 0

For taste shocks that are not too wide, we can guarantee strictly positive
consumption and a bounded ergodic set for welfare. The nonnegativity
constraints are then satisfied, so that this solves the problem that imposes
them.

Example 2. To illustrate the numerical value of our recursive for-
mulation, we now compute the solution for the logarithmic utility case

with , , , ,�1U(c) p log (c) b p 0.9 e p h p 0.6 v p 1.2 v p 0.75 p ph l

, and several values of . Figure 2 displays steady-state distributionsˆ0.5 b

of welfare in consumption-equivalent units . The distribu-C(v(1 � b))
tions have a smooth bell curve shape. This must be due to the smooth,
mean-reverting dynamics of the model, since it cannot be a direct con-
sequence of our two-point distribution of taste shocks. Dispersion ap-
pears to increase for lower values of , supporting the natural conjectureb̂

that as we approach , the Atkeson-Lucas case, the invariant dis-b̂ r b

tributions diverge.
We now briefly discuss issues of uniqueness and stability of the in-

variant distribution guaranteed by proposition 3. This question is of
economic interest because it represents an even stronger notion of social
mobility than that implied by the mean reversion condition (19) dis-
cussed in the previous section. Suppose that the economy finds itself at
a steady state . Then convergence from any initial toward thew* v 0

distribution means that the distribution of welfare for distant de-w*
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scendants is independent of an individual’s present condition. The past
exerts some influence on the present, but its influence dies out over
time. The inheritability of welfare is imperfect, and the advantages or
disadvantages of distant ancestors are eventually wiped out.

Indeed, the solution may display this strong notion of social mobility.
To see this, suppose that the ergodic set for is compact, which is′{k (v )}t

guaranteed if . Then if the policy function is monotonewg ! 1 g (v, v)
in v, the invariant distribution is unique and stable: starting fromw*
any initial distribution , the sequence of distributions , generatedw {w}0 t

by , converges weakly to .11 The required monotonicity of the policywg w*
functions was satisfied by examples 1 and 2 and seems plausible more
generally.12 Another approach suggests uniqueness and convergence
without relying on monotonicity of the policy functions. Grunwald et
al. (2000) show that one-dimensional, irreducible Markov processes with
the Feller property that are bounded below and are conditional linear
autoregressive, as implied by (19), have a unique and stable invariant
distribution. All their hypotheses have been verified here except for the
technical condition of irreducibility.13 Although we do not pursue this
further, our discussion illustrates how the forces for reversion in (19)
might be exploited to establish uniqueness and convergence.

We have focused on steady states in which the distribution of welfare
replicates itself over time. However, for the logarithmic utility case we
can also characterize transitional dynamics.

Proposition 4. If utility is logarithmic, , then for anyU(c) p log (c)
initial distribution of entitlements w there exists an endowment level

such that the solution to the social planning problem is gen-ˆe p e(w)
erated by the policy functions starting from w. The functionu w ˆ(g , g ) e
is increasing in that if first-order stochastically dominates , thenb aw w

.a bˆ ˆe(w ) ! e(w )
One can apply this result to the case with no initial inequality, where

dynasties are all started at solving . The cross-sectional′v* k (v*) p 0
distribution of welfare and consumption fans out over time starting from
this initial egalitarian position. The issues of convergence and unique-
ness discussed above now acquire an additional economic interpreta-
tion. It implies that the transition is stable, with the cross-sectional dis-
tributions of welfare and consumption converging over time to the
steady state.

11 This follows since the conditional-expectation equation (19) ensures enough mixing
to apply Hopenhayn and Prescott’s theorem (see Stokey and Lucas 1989, 382–83).

12 Indeed, it can be shown that must be strictly increasing in v. However, althoughwg (v, v)
we know of no counterexample, we have not found conditions that ensure the monoto-
nicity of in v for .wg (v, v) v ( v

13 We conjecture that this condition could be guaranteed in an extension with a con-
tinuous distribution of taste shocks.
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As mentioned in Section IV, for any utility function one can char-
acterize the solution for any as the solution to a relaxed problem(w, e)
with some sequence that is not necessarily exponential, that is,{Q }t
imposing the general intertemporal constraint (10) instead of (11).
Proposition 4 identifies the distributions and endowment pairs (w, e)
that lead to exponential in the logarithmic case. More generally,{Q }t
with logarithmic utility for any pair , we can show that tˆ(w, e) Q p b �t

for some constant a. The entire optimal allocation can then betab

characterized by the policy functions from a nonstationary Bellman
equation. Since is asymptotically exponential (i.e., �tˆ{Q } lim b Q pt tr� t

), the long-run dynamics are dominated by the policy functions u1 (g ,
from the problem with that we have characterized.w tˆg ) Q p bt

We have shown the existence of a steady state generated by thew*
policy function . We now provide sufficient conditions to ensure thatwg

is also a steady state for the social planning problem. This involvesw*
two things. We first establish that allocations generated by the policy
functions are indeed incentive compatible by verifying the limiting con-
dition (17) in theorem 2; this guarantees that, given and h, thew*
allocation maximizes the Lagrangian (12). Second, we verify that av-
erage consumption is finite under , so that there exists some endow-w*
ment e for which the resource constraints (4) and (10) hold. It follows
that the allocations generated by solve the social planning prob-u w(g , g )
lem, given e and .w*

Proposition 5. The allocation generated by the policy functions
starting at any solves the component planning problem inu w(g , g ) v 0

any of the following cases: (a) utility is bounded above, (b) utility is
bounded below, (c) utility is logarithmic, or (d) or .g ! 1 g 1 0

Next, we give sufficient conditions to guarantee that total consump-
tion is finite at the steady state . If the ergodic set for welfare v isw*
bounded away from the extremes, then consumption is bounded and
total consumption is finite. Even when a bounded ergodic set for welfare
v cannot be ensured, we can guarantee that total consumption is finite
for a large class of utility functions.

Proposition 6. Total consumption is finite under the invariant
distribution ,w*

uC(g (v, v))p(v)dw*(v) ! �,��
v�V

if either (a) the function is convex over for some′ ′ ¯C (U(c)) p 1/U (c) c ≥ c
or (b) or .c̄ ! � g 1 0 g ! 1

It is worth remarking that the hypotheses of all these propositions
are met for a wide range of primitives. In particular, they hold for any
utility function as long as the amplitude of taste shocks is not too wide,
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so that we can ensure that or . They also hold for any arbitraryg 1 0 g ! 1
amplitude of taste shocks when utility is logarithmic or when utility is
bounded above and is asymptotically convex. For example, At-′1/U (c)
keson and Lucas (1992) focused on the CRRA specification U(c) p

with . All our results apply in this specification: for1�jc /(1 � j) j 1 0
with any shock distribution and for with shocksj � [1, �) j � (0, 1)

that are not too wide.
The steady-state distribution w and the implied value of total con-

sumption will generally vary with h. Thus different values h translate
into different required endowments e. For the CRRA case, we can say
that steady-state consumption is a power function of h and thus has full
range. In fact, in this case the entire solution for consumption is ho-
mogeneous of degree one in the value of the endowment e. This ensures
a steady-state solution to the social planning problem for any endow-
ment level.

VII. Pareto Problem

We now return to the Pareto problem (9) and its relation to the social
planning problem. Recall that the former is exactly as the latter except
that the promise-keeping constraints are inequalities instead of equal-
ities. The next result establishes that these inequality constraints bind
for steady-state distributions with strictly positive consumption. Thusw*
the solutions to the Pareto and social planning problems coincide. The
proof relies on the fact that a marginal increase in v contributes

to the welfare criterion (9) (see also [7]) and that ,′ ′k (v) � 1 k (v) ! 1
unless consumption is zero for some agents. Recall that wasS(w; e)
defined in (8).

Proposition 7. Let denote a steady state for the social planningw*
problem. Suppose that consumption is strictly positive for all agents, so
that for all v in the support of . Then solvesuC(g (v, v)) 1 0 w* w p w*
the Pareto problem

max S(w; e) � vdw(v)�[ ]
w

subject to

w(v) ≤ w*(v) for all v.

Thus steady states for the social planning problem coincide with
steady states for the Pareto problem as long as consumption is pos-
itive. That is, if the Pareto problem is started with the distribution

, then it is replicated over time and for allw̃ p w* w p w* t p 0, 1,t

. By implication, the Pareto optimum is then time-consistent: the…
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initial solution at also solves the Pareto problem at any futuret p 0
period t. In other words, this Pareto-efficient allocation is ex post
Pareto efficient. Note that the condition that consumption be strictly
positive is guaranteed if utility is unbounded below or if the ampli-
tude of the taste shocks is not too wide so that (see propositiong 1 0
2).

In the Pareto problem (9), the welfare of future generations was
aggregated using geometric Pareto weights. We now map these weights
into their welfare implications and discuss a planning problem that is
cast directly in terms of welfare, without Pareto weights.

Starting from the steady state , the optimum for the Pareto problemw*
with weights for has and delivers a constant ex-tˆa p b t ≥ 1 w p w*t t

pected welfare level to all future generations. ConsiderV * { vdw*(v)∫
then the problem of maximizing the expected welfare � [v ] p�1 s

of any particular generation subject to delivering expectedv dw(v ) s ≥ 1∫ s s s

welfare of at least for all other future generations,V *

v dw(v ) ≥ V *, (22)� t t t

while delivering to the first generation in an incentive-compatible˜w ≤ w0

way for some given initial distribution . Thus this planning problemw̃

solves for an efficient point on the frontier of attainable welfare for
founding members of each dynasty, , and expected welfare for futurev 0

generations, for . A steady state for the Pareto� [v ] t p 1, 2, … w*�1 t

problem (9) is also a steady state for this planning problem and rep-
resents a symmetric point on this frontier: given andw̃ p w* V * p

, the solution has . The Pareto weights representtˆvdw*(v) w p w* a p b∫ t t

the Lagrange multipliers on the inequality constraints (22).

VIII. Conclusions

How should privately felt parental altruism affect the social contract?
What are the long-run implications for inequality? To address these
questions, we modeled the trade-off between equality of opportunity for
newborns and incentives for altruistic parents. In our model, society
should exploit altruism to motivate parents, linking the welfare of chil-
dren to that of their parents. If future generations are included in the
welfare function, this inheritability should be tempered and the exis-
tence of a steady state is ensured, where welfare and consumption are
mean-reverting, long-run inequality is bounded, social mobility is pos-
sible, and misery is avoided by everyone.

The backbone of our model requires a trade-off between insurance
and incentives. The source for this trade-off is inessential. In this paper,
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we adopted the Atkeson-Lucas taste-shock specification for purposes of
comparison. In Farhi and Werning (2006), we study a dynamic Mirrlees-
ian model—with productivity shocks instead of taste shocks—and find
that a progressive estate tax implements efficient allocations by provid-
ing the necessary mean reversion across generations.

Appendix

Proof of Theorem 1

The value function defined by (13) is weakly concave since the objectivek(v)
function is concave and the constraint set convex. Weak concavity implies con-
tinuity over the interior of its domain: . If utility is bounded below, then¯(v, v)
continuity at is established as follows. Define the first-best value functionv̄

�

t t t tˆk*(v) { max b [vu (v ) � hC(u (v ))] Pr (v )� � t t t
t t�1tp0 v �V{u }t

subject to

�

t t tv p b vu (v ) Pr (v ).� � t t
t t�1tp0 v �V

Then is continuous and with equality at . Since is weaklyk*(v) k(v) ≤ k*(v) v k(v)
convex, . Toward a contradiction, suppose . Thenlim k(v) ≥ k(v) lim k(v) 1 k(v)vfv vfv— —

0 ≤ lim [k*(v) � k(v)] p k*(v) � limk(v) ! k*(v) � k(v),
vfv vfv

a contradiction since . Thus must be continuous at . Thisk(v) � k*(v) p 0 k(v) v
completes the proof that is continuous.k(v)

We first show that the constraint (11) with implies that utility andˆq p b

continuation welfare are well defined. Toward a contradiction, suppose that

T

tlim b � vu� s t t
tp0Tr�

is not defined, for some . This implies thats ≥ �1

T

tlim b max {� vu , 0} p �.� s t t
tp0Tr�

Since utility is concave, (i.e., ) for some ,vu ≤ AC(u) � B vU(c) ≤ Ac � B A, B 1 0
so it follows that

T T T

t t tˆb max {� vu , 0} ≤ A b � [C(u )] � B ≤ A b � [C(u )] � B.� � �s t t s t s t
tp0 tp0 tp0

Taking the limit yields . Since there are finitely manyT tˆlim � b � [C(u )] p �Tr� �1 ttp0

histories , this implies . If there is a nonzeroTs s�1 tˆv � V lim � b � [C(u )] p �Tr� �1 ttp0

measure of such agents, this implies a contradiction of the intertemporal con-
straint (11) and thus of at least one resource constraint in (4). Thus, for both
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the relaxed and the original social planning problems, utility and continuation
welfare are well defined, which is important for the recursive formulation.

We now prove two lemmas that imply the rest of the theorem. Consider the
optimization problem on the right-hand side of the Bellman equation:

ˆsup�[vu(v) � hC(u(v)) � bk(w(v))] (A1)
u,w

subject to (15) and (16). Define and ˆm { max [vU(c) � hc] k(v) { k(v) �c≥0,v�V

. The maximization in (A1) is then equivalent, up to constants, toˆm/(1 � b) ≤ 0

ˆ ˆsup�[vu(v) � hC(u(v)) � m � bk(w(v))] (A2)
u,w

subject to (15) and (16). The objective function in (A2) is nonpositive, which
simplifies the arguments below.

Lemma A1. The supremum in (A1), or equivalently (A2), is attained.
Proof. Suppose first that utility is unbounded below. We show that

ˆ ˆlimk(v) p limk(v) p �� (A3)
¯vrv vr��

and then use this result to restrict, without loss, the optimization within a com-
pact set, ensuring that a maximum is attained. To establish these limits, define
the function

�

t t tˆ ˆh(v; b) { sup b � [vu (v ) � hC(u (v )) � m]� �1 t t t
t tp0{u (v )}t

subject to . Since this corresponds to the same problem but� t tv p � � b vu (v )�1 t ttp0

without the incentive constraints, it follows that . Sinceˆk̂(v) ≤ h(v, b) vu �
and , it follows thatˆhC(u) � m ≤ 0 b ! b

mˆ ˆh(v, b) ≤ h(v, b) p v � hC(v, b) � , (A4)
1 � b

where

�

t tĈ(v, b) { inf b � [C(u(v ))]� �1
t tp0{u(v )}

subject to

�

t tv p b � [vu(v )].� �1 t
tp0

This is a standard allocation problem, with solution for somet ′ �1u(v ) p (C ) (vg(v))t

positive multiplier , increasing in v and such that andg(v) lim g(v) p 0vr��

. Thenlim g(v) p �vr�

1 ′ �1Ĉ(v, b) p �[C((C ) (vg(v)))]
1 � b

(note that here represents the inverse function of′ �1(C ) : � r U(� )� �
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; i.e., if , then ), so that′ ′ ′ �1C (u) : U(� ) r � y p C (x) (C ) (y) p x lim h(v,� � vr��

and . Using the inequality (A4) establishesb) p �� lim h(v, b) p ��vr�

and , which, in turn, imply the limitsˆ ˆlim h(v, b) p �� lim h(v, b) p ��vr�� vr�

(A3), using the fact that .ˆk̂(v) ≤ h(v, b)
Fix a v. Then and satisfies constraints (15) and (16),w(v) p v u(v) p (1 � b)v

so that the maximized value must be greater than k p v(1 � b) � C(v(1 �
. Then, since the objective is nonpositive, we can restrict theˆ ˆb)) � m � bk(v)

maximization over so that . Since is concave withˆˆ ˆw(v) k(w(v)) ≥ k/[bp(v)] k(w(v))
the limits (A3), this defines a closed, bounded interval for for eachw(v) v �

. Similarly, we can restrict the maximization over so thatV u(v) vu(v) �
. Since is strictly concave, withhC(u(v)) � m ≥ k/p(v) vu � hC(u) vu � hC(u) r

�� when either or , this defines a closed, bounded interval foru r � u r ��
for each . Hence, without loss of generality, we can restrict the max-u(v) v � V

imization of the continuous objective function (A2) to a compact set, so that a
maximum must be attained.

If utility is bounded below, then and (by the same ar-ˆlim k(v) p v 1 ��vrv—
gument as above) . Hence, the restrictions ˆˆ ˆlim k(v) p �� k(w(v)) ≥ k/[bp(v)]vrv̄

and continue to define, given v, closed intervalsvu(v) � hC(u(v)) � m ≥ k/p(v)
for and for each . Again, restricting the maximization in (A2),w(v) u(v) v � V

without loss of generality, within these intervals ensures that the maximum is
attained. QED

Lemma A2. The value function satisfies the Bellman equation (14)–k(v)
(16).

Proof. Suppose that for some v

ˆk(v) 1 max�[vu(v) � hC(u(v)) � bk(w(v))],
u,w

where the maximization is subject to (15) and (16). Then there exists suchD 1 0
that

ˆk(v) ≥ �[vu(v) � hC(u(v)) � bk(w(v))] � D

for all (u, w) that satisfy (15) and (16). But then by definition
�

t t tˆ ˜ ˜k(w(v)) ≥ b � [vu(v ) � hC(u(v ))]� �1 t t t
tp0

for all allocations that yield and are incentive compatible. Substituting,ũ w(v)
we find that

�

t t tˆk(v) ≥ b � [vu (v ) � hC(u (v ))] � D� �1 t t t
tp0

for all incentive-compatible allocations that deliver v, a contradiction with the
definition of ; namely, there should be a plan with value arbitrarily close tok(v)

. We conclude thatk(v )0

ˆk(v) ≤ max�[vu(v) � hC(u(v)) � bk(w(v))]
u,w

subject to (15) and (16).
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By definition, for every v and , there exists a plan that ist˜e 1 0 {u(v ; v, e)}t

incentive compatible and delivers v with value
�

t t tˆ ˜ ˜b � [vu(v ; v, e) � hC(u(v ; v, e))] ≥ k(v) � e.� �1 t t t
tp0

Let

ˆ(u*(v), w*(v)) � arg max�[vu(v) � hC(u(v)) � bk(w(v))].
u,w

Consider the plan and fort ˜u (v ) p u*(v ) u (v ) p u ((v , … , v); w*(v ), e)0 0 0 t t�1 1 t 0

. Thent ≥ 1
�

t t tˆk(v) ≥ b � [vu (v ) � hC(u (v ))]� �1 t t t
tp0

�

t t�1 t�1ˆ ˆp � v u*(v ) � hC(u*(v )) � b b � [v u (v ) � hC(u (v ))]��1 0 0 0 0 t�1 t�1 t�1[ ]
tp0

ˆ ˆ≥ max�[vu(v) � hC(u(v)) � bk(w(v))] � be.
u,w

Since was arbitrary, it follows thate 1 0 k(v) ≥ max �[vu(v) � hC(u(v)) �u,w

subject to (15) and (16). QEDb̂k(w(v))]

Proof of Theorem 2

We establish the following results from which the theorem follows: (a) An al-
location is optimal for the component planning problem (13) with multiplier{u }t
h, given , if and only if it is generated by the policy functions u wv p v (g , g )0

starting at , is incentive compatible, and delivers welfare . (b) An allocationv v0 0

generated by the policy functions , starting at , hasu w{u } (g , g ) vt 0

and delivers welfare . (c) An allocation generatedt t�1lim b � [v(v )] p 0 v {u }tr� �1 t 0 t

by the policy functions , starting from , is incentive compatible ifu w(g , g ) v 0

t t�1 t�1lim sup� b v(j (v )) ≥ 0�1 t
tr�

for all reporting strategies j.
Part a: Suppose that the allocation is generated by the policy functions{u }t

starting from , is incentive compatible, and delivers welfare . After repeatedv v0 0

substitutions of the Bellman equation (14), we arrive at
T

t t t T�1 Tˆ ˆk(v ) p b � [vu (v ) � hC(u (v ))] � b � k(v (v )). (A5)�0 �1 t t t �1 T�1
tp0

Since is bounded above, this implies thatk(v )0

�

t t tˆk(v ) ≤ b � [vu (v ) � hC(u (v ))],�0 �1 t t t
tp0

so is optimal, by definition of .{u } k(v )t 0

Conversely, suppose that an allocation is optimal given . Then by defi-{u } vt 0
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nition it must be incentive compatible and deliver welfare . Define the con-v 0

tinuation welfare implicit in the allocation

�

t�1 tw (v ) { b � [vu (v )],�0 0 0 t t
tp1

and suppose that either or for someu wu (v) ( g (v; v ) w (v) ( g (v; v ) v �0 0 0 0

. Since the original plan is incentive compatible, and satisfyV {u } u (v) w (v)t 0 0

(15) and (16). The Bellman equation then implies that

u u wk(v ) p �[g (v; v ) � hC(g (v; v )) � bk(g (v; v ))]0 0 0 0

1 �[u (v) � hC(u (v)) � bk(w (v))]0 0 0

�

t t t≥ � [u (v ) � hC(u (v ))] � b � [u (v ) � hC(u (v ))].��1 0 0 0 0 �1 t t
tp1

The first inequality follows since does not maximize (14); the second in-u 0

equality follows the definition of . Thus the allocation cannot bek(w (v)) {u }0 t

optimal, a contradiction. A similar argument applies if the plan is not generated
by the policy functions after some history and . We conclude that antv t ≥ 1
optimal allocation must be generated from the policy functions.

Part b: First, suppose that an allocation generated by the policy functions{u , v }t t

starting at satisfies . Then, after repeated sub-u w t t�1(g , g ) v lim b � v(v ) p 00 tr� �1 t

stitutions of (15), we obtain

T

t t T�1 Tv p b � [vu (v )] � b � [v (v )]. (A6)�0 �1 t t �1 T�1
tp0

Taking the limit, we get so that the allocation delivers� t tv p � b � [vu (v )] {u }0 �1 t t ttp0

welfare . Next, we show that for any allocation generated by startingu wv (g , g )0

from ,v 0

t t�1limb � v(v ) p 0.�1 t
tr�

Suppose that utility is unbounded above and . Thent t�1lim sup b � v(v ) 1 0tr� �1 t

implies that . Since the value function ist t�1ˆ ˆb 1 b lim sup b � v(v ) p � k(v)tr� �1 t

nonconstant, is concave, and reaches an interior maximum, we can bound the
value function so that , with . Thusk(v) ≤ av � b a ! 0

t t�1 t t�1ˆ ˆlim infb � k(v(v )) ≤ a lim supb � v(v ) � b p ��,�1 t �1 t
tr� tr�

and then (A5) implies that , a contradiction since there are feasiblek(v ) p ��0

plans that yield finite values. We conclude that .t t�1lim sup b � v(v ) ≤ 0tr� �1 t

Similarly, suppose that utility is unbounded below and that
. Since , this implies thatt t�1 t t�1ˆ ˆlim inf b � v(v ) ! 0 b 1 b lim inf b � v(v ) ptr� �1 t tr� �1 t

. Using , with , we conclude that�� k(v) ≤ av � b a 1 0

t t�1ˆlim infb � k(v(v )) p ��,�1 t
tr�
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implying , a contradiction. Thus we must havek(v ) p ��0

.t t�1lim inf b � v(v ) ≥ 0tr� �1 t

The two established inequalities imply that .t t�1lim b � v(v ) p 0tr� �1 t

Part c: Suppose that for every reporting strategyt t�1 t�1lim sup b � v(j (v )) ≥ 0tr� �1 t

j. Then after repeated substitutions of (16),

T

t t t T�1 T Tv ≥ b � [vu (j (v ))] � b � [v (j (v ))],�0 �1 t t �1 T�1
tp0

implying

T

t t tv ≥ lim inf b � [vu (j (v ))].�0 �1 t t
tp0Tr�

Therefore, is incentive compatible, since is attainable with truth-telling{u } vt 0

from part b.

Proof of Proposition 1

Strict concavity.—Let be generated from the policy func-t t�1{u (v , v ), v(v , v )}t 0 t 0

tions starting at (note that no claim of incentive compatibility is required).v 0

Take two initial welfare values and , with . Define the average utilitiesv v v ( va b a b

a t t tu (v ) { au (v , v ) � (1 � a)u (v , v ),t t a t b

a t t tv (v ) { av(v ; v ) � (1 � a)v(v ; v ).t t a t b

As shown in the proof of theorem 2, and deliver welfaret t{u (v , v )} {u (v , v )}t a t b

and , respectively. This implies that delivers welfarea t av v {u (v )} v { av �a b t a

. It also implies that(1 � a)vb

t tu (v ; v ) ( u (v ; v ), (A7)t a t b

for some history . Consider iterating T times on the Bellman equationst t�1v � V

starting from and :v va b

T

t t t T�1 Tˆ ˆk(v ) p b � [vu (v ; v ) � hC(u (v ; v ))] � b � k(v (v ; v ))�a �1 t t a t a �1 T�1 a
tp0

and

T

t t t T�1 Tˆ ˆk(v ) p b � [vu (v ; v ) � hC(u (v ; v ))] � b � k(v (v ; v )),�b �1 t t b t b �1 T�1 b
tp0



inequality and social discounting 393

and averaging we obtain for large enough T

ak(v ) � (1 � a)k(v )a b

T

t a t t tˆp b � [vu (v ) � h[aC(u (v ; v )) � (1 � a)C(u (v ; v ))]]� �1 t t t a t b
tp0

T�1 T Tˆ� b � [ak(v (v ; v )) � (1 � a)k(v (v ; v ))]�1 T�1 a T�1 b

T

t a t a t T�1 a T aˆ ˆ! b � [vu (v ) � hC(u (v ))] � b � k(v (v )) ≤ k(v ),� �1 t t t �1 T�1
tp0

where the strict inequality follows from the strict concavity of the cost function
, the fact that we have the inequality (A7), and the weak concavity of theC(u)

value function k. The last weak inequality follows from iterating on the Bellman
equation for since the average plan ( , ) satisfies the constraints of thea a av u v
Bellman equation at every step. This proves that the value function is strictlyk(v)
concave.

Differentiability.—Since is concave, it is subdifferentiable: there is at leastk(v)
one subgradient at every v. We establish differentiability by proving that there
is a unique subgradient by variational envelope arguments.

Suppose first that utility is unbounded below. Fix an interior value . In av 0

neighborhood of define the test functionv 0

u u wˆW(v) { �[v[g (v, v ) � (v � v )] � hC(g (v, v ) � (v � v )) � bk(g (v, v ))].0 0 0 0 0

Since is the value of a feasible allocation in the neighborhood of , itW(v) v 0

follows that , with equality at . Since exists, it follows, by′W(v) ≤ k(v) v W (v )0 0

application of the Benveniste-Scheinkman theorem (see Stokey and Lucas 1989,
theorem 4.10), that also exists and′k (v )0

′ ′ ′k (v ) p W (v ) p 1 � h�[C (u*(v))]. (A8)0 0

Finally, since , this shows that . The limit is′ ′ ′C (u) ≥ 0 k (v) ≤ 1 lim k (v) p 1vr��

inherited by the upper bound introduced in the proofˆk(v) ≤ h(v, b) � m/(1 � b)
of theorem 1, since .lim �h(v, b)/�v p 1vr��

The limit follows immediately from if′ ¯lim k (v) p �� lim k(v) p �� v !vrv̄ vrv̄

. Otherwise it is inherited by the upper bound in-ˆ� k(v) ≤ h(v, b) � m/(1 � b)
troduced in the proof of theorem 1, since .lim �h(v, b)/�v p ��vr�

Next, suppose that utility is bounded below but unbounded above. With-
out loss of generality, we normalize so that . ThenU(0) p 0

for all reporting strategies j so that, when wet t�1 t�1lim sup � b v(j (v )) ≥ 0tr� �1 t

apply theorem 2, a solution to the planner’s sequence problem is ensured.{u }t
Then, for any interior , the plan is incentive compatible and attainsv {(v/v )u }0 0 t

value v for the agent. In addition, the test function

� v vt t tˆW(v) { b � v u (v ) � hC u (v )� �1 t t t( )[ ]v vtp0 0 0

satisfies , and is differentiable. It follows from theW(v) ≤ k(v) W(v ) p k(v )0 0

Benveniste-Scheinkman theorem that exists and equals .′ ′k (v ) W (v )0 0

The proof of is the same as in the case with utility unbounded′lim k (v) p ��vrv̄
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below. Finally, we show that . Consider the deterministic planning′lim k (v) p �vrv—
problem

�

tˆk(v) { max b [u � hC(u )]� t t
tp0u

subject to . Note that is differentiable with . Since� t ′v p � b u k(v) lim k (v) p �t vrvtp0 —
deterministic plans are trivially incentive compatible, it follows that ,k(v) ≤ k(v)
with equality at . Then we must have to avoid a contradiction.′v lim k (v) p �vrv—

If utility is bounded above and unbounded below, then a symmetric argument,
normalizing utility of infinite consumption to zero, also works. If utility is
bounded above and below, we can generate a test function that combines both
arguments, one for and another for .v ! v v ≥ v0 0

Proof of Proposition 2

We first show that we can simplify problem (14)–(16). Let V p {v , v , … , v }1 2 N

with . The incentive compatibility constraint (16) is…v p v ! v ! ! v p v1 2 N

equivalent to the subset that considers only neighboring deviations:

v u(v ) � bw(v ) ≥ v u(v ) � bw(v ), n p 1, 2, … , N � 1, (A9)n n n n n�1 n�1

and

v u(v ) � bw(v ) ≥ v u(v ) � bw(v ), n p 2, 3, … , N. (A10)n n n n n�1 n�1

These imply that is nondecreasing and that is nonincreasing.u(v) w(v)
Now, consider a simplified version of the problem (14)–(16) that replaces

(16) with (A9) and the monotonicity constraint that be nondecreasing (ig-u(v)
noring the constraints [A10]). We show next that at the solution to this simplified
problem, all the inequalities (A9) hold with equality. This, in turn, implies that
the constraints (A10) are satisfied. As a result, the solution to this simplified
problem is also a solution to problem (14)–(16).

That the constraints (A9) hold with equality at a solution to the simplified
problem is proved by contradiction. Suppose that, for some ,n p 1, 2, …

, (A9) is slack:K � 1

v u(v ) � bw(v ) 1 v u(v ) � bw(v ). (A11)n n n n n�1 n�1

This implies, from the monotonicity constraint, that andu(v ) 1 u(v )n�1 n

. Now consider the alternative allocation that changes onlyw(v ) ! w(v )n�1 n

and : decreasing and increasing , while keeping thew(v ) w(v ) w(v ) w(v )n n�1 n n�1

average constant. Such a change does not affect thew(v )p(v ) � w(v )p(v )n�1 n�1 n n

promise-keeping constraint (15). Increasing relaxes the incentive con-w(v )n�1

straint (A9) for , whereas lowering is feasible because of the strictn � 1 w(v )n

inequality (A11). Thus a small change in this direction is feasible. However, since
is strictly concave in w (proposition 1), this change increases the objectivek(w)

(14), a contradiction with optimality. Thus, at an optimum, the constraints (A9)
hold with equality.

The arguments above justify focusing on the simplified problem that maxi-
mizes (14) subject to (15) (with multiplier l), (A9) (with multiplier ), andmn
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(with multiplier ) for . The first-order condi-u(v ) ≤ u(v ) c n p 1, … , N � 1n�1 n n

tions are

′ up(v )[v � hC (g (v , v)) � lv ] � v m � v m � c � c ≤ 0,n n n n n n n�1 n�1 n n�1

′ wˆp(v )[bk (g (v , v)) � bl] � b(m � m ) p 0n n n n�1

for , where , and we adopt the conventionn p 1, 2, … , N m p m p c p c p 00 N 0 N

that .v p v0 1

Consider first the case in which utility is unbounded below, so that the solution
for is interior. Summing the first-order conditions for over all ,u(v) u(v) v � V

we get

′ u ′h C (g (v, v))p(v) p 1 � k (v)�
v�V

since by the envelope condition.′l p k (v)
Now take the set of all agents that receive the same allocationn p 1, … , m

as the agent with the lowest shock ; then . Then summing the first-orderv c p 0m—
conditions for over impliesu(v ) n p 1, … , mn

v mm m′ ′ u ′ u— —�[vFv ≤ v ][1 � k (v)] � p hC (g (v, v)) ≤ h C (g (v, v))p(v)�m— Pr (v ≤ v ) v�Vm—

′p 1 � k (v), (A12)

where the inequality follows by . Summing the first-order con-u ug (v, v) ≤ g (v, v)
ditions for over , we getw(v ) n p 1, … , mn

ˆ ˆm b bm ′ ′ w ′ ′ w— p k (v) � k (g (v, v)) ≥ k (v) � k (g (v, v)),
Pr (v ≤ v ) b bm—

where the inequality follows by . Combining both inequalitiesw wg (v, v) ≥ g (v, v)
gives

bv � 1 � �[vFv ≤ v ] bm m′ w ′— —1 � k (g (v, v)) ≤ [1 � k (v)] � 1 � . (A13)ˆ ˆvb bm—

Symmetrically, take the set of all agents receiving the samen p m, … , N
allocations as the agent with the highest taste shock ; then . Then addingv c p 0m

up their first-order condition gives

mv m�1m�1′ ′ u ′ u�[vFv ≥ v ][1 � k (v)] � p hC (g (v, v)) ≥ h C (g (v, v))p(v)�m— ) v�VPr (v ≥ vm

′p 1 � k (v), (A14)

ˆ ˆm b bm�1 ′ ′ w ′ ′ w� p k (v) � k (g (v, v)) ≤ k (v) � k (g (v, v)),
) b bPr (v ≥ vm
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where the inequality arises from and . Com-u u w wg (v, v) ≥ g (v, v) g (v, v) ≤ g (v, v)
bining both inequalities gives

� 1 � �[vFv ≥ vvb bmm�1 ] ′ ′ w[1 � k (v)] � 1 � ≤ 1 � k (g (v, v)). (A15)ˆ ˆb bvm�1

To arrive at expression (21) take the that maximizes the right-hand side ofm
(A13) and that minimizes the left-hand side of (A15) to definem

b v � 1 � �[vFv ≥ v ]n�1 n
g { minˆ v1≤n≤Nb n�1

and

b v � 1 � �[vFv ≤ v ]n n
g { maxˆ v1≤n≤Nb n

(recall the convention that ). Note that and thatˆv p v g ≤ b/b ≤ g g ≥0 1

and . It follows that in the limit asˆ ˆ(b/b)(v � 1 � v/v)/v g ≤ (b/b)(v � 1 � v/v)/v

(which requires both and given that ), we getv/v r 1 v r 1 v r 1 �[v] p 1 g r
and .ˆ ˆb/b g r b/b

In the bounded utility case the arguments are similar, but we need to consider
the possibility that consumption is zero. First, take the case in which l p

. As before, let be the set of all agents who receive the′k (v) 1 1 n p 1, … , m
same allocation as the agent with the lowest taste shock . Then adding up thev

first-order conditions for for and evaluating it atu(v) n p 1, … , m u(v) p
(so that ) requires′U(0) C (u(v)) p 0

m

′[1 � k (v)] v p(v ) � v m ≤ 0,� n n m m— —np1

a contradiction, since the left-hand side is strictly positive: and′1 � k (v) 1 0
. Thus, for consumption is strictly positive and the same argument′m ≥ 0 k (v) ! 1m—

used in the unbounded utility case applies to derive the bounds.
Next, consider the case in which . As before, let′l p k (v) ≥ 1 n p m, … , N

denote the set of all agents who receive the same allocation as the agent with
the highest taste shock . Then adding up the first-order conditions for forv u(v)

, we find that an interior solution would requiren p m, … , N

N

′ ′ u[1 � k (v) � hC (g (v, v))] v p(v ) � v m p 0,� n n m�1 m�1— —npm

which is not possible since the left-hand side is strictly negative. Thus, for
consumption must be zero: and′ u wk (v) ≥ 1 g (v, v) p U(0) g (v, v) p [v �

for all .U(0)]/b 1 v v � V
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Proof of Proposition 3

Consider first the case with utility unbounded below. Since the derivative ′k (v)
is continuous and strictly decreasing, we can define the transition function

′ w ′ �1Q(x, v) p k (g ((k ) (x), v))

for all if utility is unbounded below. For any probability measure m, letx ! 1
be the probability measure defined byT (m)Q

T (m)(A) p 1 dm(x)dp(v)Q � {Q(x,v)�A}

for any Borel set A. Define

2 n…T � T � � TQ Q Q
T { .Q ,n n

For example, is the empirical average of over all histories of′ nT (d ) {k (v )}Q ,n x t tp1

length n starting with . The following lemma establishes the existence′k (v ) p x0

of an invariant distribution by comparing the limits of .{T }Q ,n

Lemma A3. If utility is unbounded below, then for any there exists ax ! 1
subsequence of distributions that converges weakly (i.e., in distribu-{T (d )}Q ,f(n) x

tion) to an invariant distribution under Q on (��, 1).
Proof. The bounds (21) derived in proposition 2 imply that, for all ,v � V

b′ wlimQ(x, v) p limk (g (v, v)) p ! 1.ˆ
xF1 vr�� b

We first extend the continuous transition function Q(x, v) : (��, 1) # V r
to a continuous transition function withˆ(��, 1) Q(x, v) : (��, 1) # V r (��, 1)

and , for all . It follows that mapsˆˆ ˆQ(1, v) p b/b Q(x, v) p Q(x, v) x � (��, 1) TQ̂

probability measures over (��, 1] to probability measures over (��, 1), and
for all .T (d ) p T (d ) x � (��, 1)ˆQ x Q x

We next show that the sequence is tight in that for any there{T (d )} e 1 0Q̂,n x

exists a compact set such that for all n. The expected valueA T (d )[A ] ≥ 1 � eˆe Q,n x e

of the distribution is simply with . Recalln ′ t�1 ′T (d ) � [k (v(v ))] x p k (v ) ! 1Q̂ x �1 t 0

that . This implies that′ t�1 t ′ˆ� [k (v(v ))] p (b/b)k (v ) r 0�1 t 0

′ ′ t�1 nmin {0, k (v )} ≤ � [k (v(v ))] ≤ T (d )[(��, �A)](�A)ˆ0 �1 t xQ

n� {1 � T (d )[(��, �A)]}1ˆ xQ

for all . Rearranging, we getA 1 0

1 �min {0, x}nT (d )[(��, �A)] ≤ ,ˆ xQ A � 1

which implies that , and therefore , is tight.n{T (d )} {T (d )}ˆ ˆQ x Q,n x

Tightness implies that there exists a subsequence that convergesT (d )Q̂,f(n) x

weakly, that is, in distribution, to some probability measure p. Since isQ̂(x, v)
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continuous in x, converges weakly to . But the linearity ofT (T (d )) T (p)ˆ ˆ ˆQ Q,f(n) x Q

implies thatTQ̂

f(n)�1T (d ) � T (d )ˆ ˆQ x Q x
T (T (d )) p � T (d ),ˆ ˆ ˆQ Q,f(n) x Q,f(n) x

f(n)

and since , we must have .f(n) r � T (p) p pQ̂

Recall that maps probability measures over (��, 1] to probability measuresTQ̂

over (��, 1). This implies that has no probability mass at {1}. Sincep p T (p)Q̂

and coincide for such probability measures, it follows that , soT T p p T (p)ˆQ Q Q

that p is an invariant measure under Q on (��, 1). QED
The argument for the case with utility bounded below is very similar. Define

the transition function as above, but for all , since now can′Q(x, v) x � � k (v)
take on any real value. If utility is unbounded above but , then there existsg ! 1
an upper bound for the ergodic set for v. Define the welfare level¯v ! v v 1H 0

by and let be the minimum of over ; this′ wv k (v ) p 1 v g (v, v) v � [v , v ]0 L 0 H

minimum is attained since is continuous. If utility is bounded above, thenwg
let be the minimum of over ; this minimum is attained sincew ¯v g v � [v , v)L 0

. In both cases, since , we must have that . Finally,w w¯lim g (v, v) pv g 1 v v 1 vvrv̄ L

the transition function is continuous with . The rest of the′Q(x, v) ≤ k (v ) ! �L

argument is then a straightforward modification of the one spelled out for the
case with utility unbounded below, except that plays the role of 1. Indeed,′k (v )L

things are slightly simpler here since we do not need to construct an extension
of Q.

If , then the bound in (21) implies that , and the′ w ˆg 1 0 k (g (v, v)) ≤ 1 � (b/b)
result follows immediately.

Proof of Proposition 4

Consider indexing the relaxed planning problem by e and setting for�1h p e
the associated component planning problem, with associated value function

. We first show that if an initial distribution w satisfies the conditionk(v; e)
, then it is a solution to the relaxed and original social planning′k (v; e)dw(v) p 0∫

problems. We then show that for any initial distribution there exists a value for
e that satisfies .′k (v; e)dw(v) p 0∫

Since utility is unbounded below, we have . Ap-′ ′ v tk (v ; e) p � [1 � hC (u (v ))]t t�1 t

plying the law of iterated expectations to (19) then yields

tb′ v t ′� [1 � hC (u (v ))] p k (v; e).�1 t ( )
b̂

With logarithmic utility, , so that implies′ ′C (u) p C(u) k (v; e)dw(v) p 0∫

v �1� [C(u )]dw(v) p h p e for all t p 0, 1, … .� �1 t

That the limiting condition (17) is satisfied is shown in proposition 5. It then
follows that allocations generated this way solve the relaxed and original social
planning problems with .�1e p h

Now consider any initial distribution w. We argue that we can find a value of
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such that . The homogeneity of the sequential problem�1 ′h p e k (v; e)dw(v) p 0∫
implies that

1 1
k(v; e) p log (e) � k v � log (e); 1 .( )ˆ 1 � b1 � b

Note that

1′k v � log (e); 1( )1 � b

is strictly increasing in e and limits to one as and to �� as . Ite r � e r ��
follows that

1′ ′k (v; e)dw(v) p k v � log (e); 1 dw(v) p 0� � ( )1 � b

defines a unique value of for any initial distribution w. The monotonicity ofê
then follows immediately by using the fact that is a strictly decreasing′ê(w) k (7; 1)

function.

Proof of Proposition 5

Part a: Suppose that is bounded above and unbounded below (part b dealsU(c)
with the bounded below case); normalize so that so that .¯lim U(c) p 0 v p 0c r�

Proposition 2 then implies that as . Moreover, note′ w ˆk (g (v, v)) r b/b v r ��
that, since u is nonpositive, for all v, implying thatw ′ wg (v, v) ≥ v/b lim k (g (v,vrv̄

. Given these limits and the fact that is continuous on′ wv)) p �� k (g (v, 7))
, it follows that , so there exists a such′ w¯(��, v) sup k (g (v, v)) ! 1 v 1 ��v�(��,v̄) L

that for all v. Hence, the sequence generated by the policy functionswg (v, v) 1 vL

satisfies for , implying the limiting condition in theorem 2.t�1v(v ) ≥ v t ≥ 1t L

Part b: If utility is bounded below, then is bounded below and thet�1v(v )t

result follows immediately since the limiting condition (17) in theorem 2 holds.
Part c: Using the optimality conditions (A12) and (A14) from the proof of

proposition 2, one can show that

′ uC (g (v, v)) v
≤ .′ uC (g (v, v)) v

With logarithmic utility, this implies that . The in-u ug (v, v) � g (v, v) ≤ log (v/v)
centive constraint then implies that . Itw wg (v, v) � g (v, v) ≤ (v/b) log (v/v) { A
follows that for all pairs of histories and . Thent�1 t�1 t�1 t�1ˆ ˆv(v ) ≥ v(v ) � tA v vt t

t t�1 t�1 t t�1 tb � [v(j (v ))] ≥ b � [v(v )] � b tA.�1 t �1 t

In the proof of theorem 2 we established that . Sincet t�1lim b � [v(v )] p 0tr� �1 t

, it follows that .t t t�1 t�1lim b tA p 0 lim sup b � [v(j (v ))] ≥ 0tr� tr� �1 t

Part d: If , then the bound in (21) implies that and′ w ˆg 1 0 k (g (v, v)) ≤ 1 � b/b

the result follows immediately. If , then we can defineg ! 1 k p 1 � [(1 �
and define by . Then for all we have′ wˆb/b)/(1 � g)] v k (v ) p k v ≤ v g (v,H H H

. It follows that the unique ergodic set is bounded above by . We canv) ≤ v vH
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now apply the argument in part a so there exists a such that wv 1 �� g (v,L

.v) 1 vL

Proof of Proposition 6

For part a, recall that under the invariant distribution . If′k (v)dw*(v) p 0 w*∫
utility is unbounded below, then all solutions for consumption are interior. For
interior solutions,

′ ′ u u1 � k (v) p h C (g (v, v))p(v) p h G(C(g (v, v)))p(v),� �
v�V v�V

where . Since G(c) is convex for , there must exist′ ′ ¯G(c) { C (U(c)) p 1/U (c) c ≥ c
scalars A, B with such that for all c. For example, setA 1 0 G(c) ≥ Ac � B A p

and . Then′ ′¯ ¯ ¯G (c) B p �G (c)c

1 u up G(C(g (v, v)))p(v)dw*(v) ≥ A C(g (v, v))p(v)dw*(v) � B,� �� �
h v�V v�V

and the result follows.
If utility is bounded below, by proposition 2, corner solutions uC(g (v, v)) p
occur for where . For , solutions are interior′0 v ≤ v ≤ v* k (v*) p 1 v 1 v*

for all , and the argument above applies. This establishesuC(g (v, v)) 1 0 v � V

that total consumption is finite.
For part b note that implies that the ergodic set for welfare v is boundedg ! 1

away from . Then the continuity of the policy function implies thatuv̄ g (v, v)
consumption is bounded by some finite number on the support ofuC(g (v, v))

. Total consumption is then finite.w*

Proof of Proposition 7

Let denote the maximum value attained for the relaxed planning prob-RS (w; e)
lem with , distribution w, and endowment e. Note thattˆQ p bt

RS(w; e) ≤ S (w; e),

with equality at steady-state distributions . Since ˆw* k(v; h)dw(v) � [he/(1 � b)]∫
represents the full Lagrangian function (which now includes the omitted term
due to e in [12]), by duality (see Luenberger 1969, chap. 8.6),

eRS (w; e) � vdw(v) ≤ k(v; h)dw(v) � h � vdw(v),� � �ˆ1 � b

with equality whenever w, h, and e are such that at the allocation that attains
the intertemporal resource constraint (11) holds, which is true at thek(v, h)

constructed steady state. Integrating the right-hand side by parts gives

eR ′S (w; e) � vdw(v) ≤ [1� w(v)][k (v; h) � 1]dv � h .� � ˆ1 � b
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It follows that

S(w; e) � vdw(v) � S(w*; e) � vdw*(v)� �[ ]
R R≤ S (w; e) � vdw(v) � S (w*; e) � vdw*(v)� �[ ]

′≤ [w*(v) � w(v)][k (v; h) � 1]dv.�
If on the support of , then the last term is strictly negative for all′k (v; h) ! 1 w*
w with for all v. Thus maximizes subject tow(v) ! w*(v) w* S(w; e) � ∫vdw(v)

for all v. Proposition 1 implies that if utility is unbounded′w(v) ≤ w*(v) k (v; h) ! 1
below, in which case consumption is strictly positive. By proposition 2, when
utility is bounded, for a positive measure of agents under if and′k (v; h) ≥ 1 w*
only if consumption is zero for a positive measure of agents under .w*
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