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Alternative methods of computing estimates of inequality measures from grouped data are 
critically examined in terms of their theoretical and empirical properties. The use of a simple 
"split-histogram" technique of interpolation is explained and supported. Theoretical and 
empirical support is also provided for the "3/3- rule"-a simple computational procedure for a 
point estimate of an inequality measure derived from its standard grouping bounds. 

1. INTRODUCTION 

If one has to work with published data on income distributions can one reliably estimate 
measures of inequality? Not surprisingly the answer to this depends on the degree of 
detail to which the information is presented. More interestingly it turns out that good 
estimates can be provided with comparatively limited information and that simple 
computational methods are available that prove to be robust under a wide range of 
circumstances. In this respect our results have strong implications for the collection and 
presentation of official statistics. 

We shall concentrate in the main on the extremely common case where the data 
are presented in grouped form and one knows, for a given set of income intervals, the 
number of people in each interval and the mean income of each interval, but nothing 
more. Using only this information it is well known that one may calculate upper and 
lower bounds within which the "true" value of the inequality measure must lie,1 so if 
these bounds are sufficiently narrow then obviously we obtain reliable estimates immedi- 
ately. However, there are many circumstances under which the bounds are such that 
the range of possible values of the statistic is quite broad, so that the question of a 
suitable intermediate value immediately arises. As it happens the simplest guess-midway 
between the bounds-is always a bad one. However, we shall show that a guess that is 
very nearly as simple turns out usually to be a very good one. 

It is fairly evident that to arrive at such an intermediate value by a method more 
persuasive than guessswork one must make some assumption about the way in which 
the population is distributed within the income ranges with which we are confronted. 
Part of our task, therefore, is to consider what criteria should be satisfied by a suitable 
method of interpolating on the distribution. For example, does it matter whether or not 
the assumed frequency distribution exhibits continuity? How sensitive is the intermediate, 
interpolated value of the inequality measure to alternative assumptions about the underly- 
ing distribution? How good are very simple interpolation methods? In appraising the 
various possible interpolation methods we shall insist on only one absolute requirement- 
that the implicit frequency function shall be statistically feasible which in practice means 
that the frequency function must be able to yield the observed interval means and 
population densities without ever requiring (locally) a negative frequency.2 
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It is also evident that the statistical properties of an inequality measure may depend 
on its theoretical characteristics. Accordingly we shall examine which measures are 
suitable in principle for estimation from such data, how the measures themselves can 
provide a test criterion for alternative interpolation methods, and how the reliability of 
particular estimates depends on the theoretical sensitivity of the inequality measure to 
transfers in different income ranges. 

2. INTERPOLATION: THE GENERAL PROBLEM 

We shall assume that the income distribution data are a set of grouped observations of 
points in [0, oo). Specifically we shall suppose that there are to income classes 

[a,, a2), [a2, a3), ... , [a., a.+1) 

where 0 --a,< a2 <... <a. <a+?1 4 00. Apart from the income interval boundaries 
a6, 0= 1, ... , to we shall assume that we have observations of no, the numbers of people 
with incomes in [a6, ao ?) and of lie, the mean income of people with incomes in that 
interval. 

Since we do not know the true density function f (y) of income y it is permissible 
to assign people arbitrarily to particular incomes subject only to two key constraints; (a) 
for any arbitrary assignment the number in interval 0 equals no, and (b) each interval 
mean in the assignment equals ,u. In particular, given any inequality measure I that is 
an S-convex function from the space of incomes to the real line, we can find two 
assignments of the population that provide, respectively, a minimum and a least upper 
bound of I subject only to these constraints namely 

fi(y)=- if y=ue6, 0=1,2,... l 
n 

-0, otherwise ( 

f2(y) = no- if y = a. n 

= 0, otherwise 

where n- _ no and A6 [ao+l?-o]/[ao+l-a6]. 
If one has the additional information that within a given interval 0, f (y) is a decreasing 

function one may improve on these two assignments by using, respectively, 

no 

MY=2n [ -_ a] 
9 

if ae < y < 2zo - ae, 

= 0, otherwise, (3) 
and 

no ae + ao+1 - 2,uo 
MY)= n a if y=a6, 

n a+1-ae (4) 
2no ,u -a Ia 
n 'a +1-ao]2, elsewhere. n [ao+l - ae]2 

9 

If in a given interval the decreasing frequency assumption is not true then let f3(y) =f(y) 
and f4(y) = fi(y) over that interval. Writing I1, .. I4, I for the values of I corresponding 
to fl(y),..., f4y), f(y) respectively it may be shown that whatever the underlying 
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distribution 
Il < I3_ I _I4 I2, 

Of course if the gap 14-I3 or the gap I2-Il is sufficiently small then the problem 
of estimation from this kind of data is virtually solved. However, we shall see in Section 
6 that 14-I3 may be significantly large so that we have the problem of finding an 
intermediate value for L To do this we need to find some "plausible" hypothetical 
frequency function f(y) so that the computed value of I lies within the required limits. 
We shall refer to this as the "interpolation problem". Clearly the method of interpolation 
may significantly affect the computed values of I, and much may depend on what we 
mean by a "plausible" f(y). Let us consider ten properties which it might be desirable 
that the hypothetical interpolated distribution should possess. 

Properties: 
1. Constraints (a) and (b) are satisfied. 
2. f(y)--0. 
3. Continuity of f(y) within any interval 0. 
4. First-order continuity at a6, 0 = 2, 3, ... , cW. 
5. Second-order continuity at a6, 0 = 2, 3,9.. ., . 
6. limy-a.+, f t(Y) = ? 
7. limya.+ f'(y) =0. 
8. "Few" turning points of f(y). 
9. A "small" range of f(y) for any given interval. 

10. Closed form integration of inequality measures. 

I I 

ao-1 a0 a0+1 a0+2 
FIGURE 1 

A pathological interpolation functi-on 
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Apart from 1 and 2, all of these are tentative and some are very vague. What we shall 
demonstrate, however, is that this vagueness does not matter much in practice. On 
occasion we shall weaken 3 to piecewise continuity, rather than continuity. Properties 
8 and 9 will be interpreted below. The idea is to avoid wild fluctuations in the imputed 
frequency distribution. The reason for this is easy to see in Figure 1, where the observed 
frequencies are drawn in as a histogram. The arbitrarily-imposed income interval bounds 
give us no reason to suppose the existence of substantial peaks and troughs; had the 
official statistical source redrawn the bounds, it is quite likely that the shape of the 
observed distribution would have been broadly similar. Hence it is desirable to avoid 
an interpolated curve of the form illustrated, though of course it is difficult to give a 
neat, tractable and general form to the kind of mathematical restriction that avoids this 
problem. 

3. METHODS OF INTERPOLATION 

To the best of our knowledge there is no single, simple function which will satisfy all 
ten points in general. However there are a number of possible compromises which we 
examine in this section. 

Piecewise Paretian interpolation. The so-called Pareto distribution of type I has 
often been suggested as a general functional form for the upper tail of income distribution. 
So it is natural to consider a Paretian density function for interpolation within intervals, 
thus: 

fs(y) = Aoy _a , y e [ao, ao+1) (5) 

where AO and a69 are parameters chosen to ensure that conditions (a) and (b) are satisfied. 
Clearly f5(y) has Properties 1-3 and 8, although there is no reason to suppose that 4, 5 
and 9 will be satisfied. 

Properties 6 and 7 can be guaranteed if a,,,+, = oo. We shall find that Property 10 
presents no problem. 

Polynomial interpolation. Consider first the use of a polynomial spline using co 
functions of the form 

f6(y)=o S YKky y e [ae, ao+?). (6) 
This form can satisfy all of Properties 1 to 7 for K - 3. Property 10 is in practice easily 
satisfied for polynomial of any order given the inequality measures we shall describe 
below. However in practice there may be considerable problems with Properties 8 and 
9, since of course there can be up to w [K -1] turning points in the resulting spline curve. 
Because of the possibility that this smooth curve may exhibit rather implausible "cork- 
screwing", we were motivated to examine some rather simpler forms. Perhaps the most 
obvious is to consider polynomial forms with K <3, namely the straight line and the 
quadratic. The advantage of the straight line 

f7(y) = yoo + yol y, y E[a6, a6+1) (7) 
is of course that it is extremely easy to calculate and to use. The disadvantage is that it 
is quite likely that once y90 and y61 are found so as to ensure that Property 1 holds, 
f7(y) may intersect the horizontal axis, thus violating Property 2. A similar problem 
exists with the quadratic and some other polynomials, and we discuss this practical 
problem in Appendix A. 

A number of authors4 have used a cubic to approximate sections of the Lorenz 
curve. The form of the frequency function in each interval is then 

f (y) = CO0[C61 + y]1/2. 
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This is in fact a special case of the Pareto type II distribution, and we may expect its 
performance in practice to be rather like a type I curve, f5(y). Moreover the computation 
of some inequality measures is rather tedious using this method. For these two reasons 
we shall not consider this further. 

Split-histogram interpolation. This apparently unusual title refers to an extremely 
useful and simple general method of interpolation. Let 

My ( no ao+l-2A.6+bo [ b) 1 
n [a0l - ao][bo - ael ] (8) 

n [ao+l - ao][ao+l - bo]' Ye [b0, 

where b0, is an arbitrary point in [ae, a6+?]. Properties 1, 2, 8, 9, 10 are satisfied, for 
some suitable choice of b, .,., b). However, the function obviously does not provide 
a neat upper tail for finite a,,+,, and it will in general be discontinuous at 2o -1 points 
in the income range. The function is illustrated in Figure 2. Note that it is essential in 
general to split the histogram for this kind of problem since the simple histogram: 

f9(y) = no[aoi - ae], y E[ao, a6+1) (9) 

Interval 10 Inter'val 11 

50,000kr it 1 55,000r k u11 0,0OOOkr '12 70O000kr 

FIGURE 2 

The split histogram. Intervals 10 to 12 for Sweden 1977 

will be inconsistent with the condition that the mean in each interval shall equal Ae (see 
Property 1). 

There is no reason of course why more than one method of interpolation should 
not be used-indeed we could use a different formula for each interval. With two 
exceptions, though, there seems to be little point in doing this and we might as well find 
an acceptable compromise method and stick to this throughout the income range. One 
may always use a different compromise for different types of data sets. The first of the 
two exceptions is where a generally useful compromise breaks down in a special case. 
An example of this is where a generally satisfactory polynomial spline is found to cross 
the axis within some interval: within that interval one may then wish to use an alternative 
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cruder interpolation function, whilst retaining the general formula elsewhere.6 The 
second exception relates to the top interval, in most cases official statistical sources leave 
a,,,,1 unspecified. One may therefore either assume-some arbitrary upper limit a,,,, = L 
such that f(y) = 0 if y > L, or let a,,,,, = 00, neither of which is entirely satisfactory. In 
the first case the results on I2, I4 and the various interpolations may be rather sensitive 
to the particular choice of L-although one can in practice place reasonable limits upon 
this choice.7 In the second case, an obvious but rather arbitrary procedure is to assume 
that the density tends to zero in a specific fashion-that is one chooses a function where 
f(y) 0 and where Properties 6 and 7 hold asymptotically at infinity, for example a 
Pareto tail. Unfortunately, the required estimate of a may be quite sensitive to the 
grouping in the upper tail, and even if the distribution over the last few intervals is 
approximately Paretian, it may not be legitimate to extrapolate the functional form to 
infinity.8 

4. THE D-MEASURE 

We are left, then, with a number of more or less satisfactory methods of interpolating 
a density furiction and hence of making single-index inequality comparisons, rather than 
merely reporting and comparing grouping bounds. But how much difference will the 
interpolation methods make in practice? Will one interpolated function lie rather close 
to another? Can we find a simple expedient compromise procedure that is almost as 
good as any other? 

To answer these questions we need first to examine inequality measures themselves. 
An inequality measure is an S-convex function from the space of incomes to the real 
line. We are especially interested in the subclass of inequality measures that are decompos- 
able by population subgroups where the subgroups are non-overlapping-known as 
Non-Overlapping-Decomposable Inequality (NODI) measures. If further we insist that 
such measures are scale-independent so that doubling or halving all incomes leaves 
measured inequality unaltered, then we are restricted to either the Gini index:9 

1 ?O oo 
IG = j J IY --z lf(y)f(z)dydz (10) 

or the Generalized Entropy class of inequality measures:'0 

[d + l][lo [Z f (y)dy - l] (1 1) 

where /3 is a parameter which may take any real value. Given measures of this form 
we may then write: 

2 
G Co n 8IJO GO 1 

IG n1 no I + li= o - ,unon (12) 
=0=1 fl/2A 2jun2O=T 

,u [, , 2+ [[,a ] n2 
(13) 

where IGO, 160 are the values of the inequality statistic within interval 0. The second 
term in (12) and (13) is simply the between-interval inequality in each case, namely I,. 

Now consider the expressions 
G iG 1 rs 

DG-I -IG Do _ 1 -i's (14) 

These ratios provide suitably normalized measures of the departure of the actual distribu- 
tion from the minimum inequality f1-distribution. If there is maximum within-interval 
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inequality (the f2-distribution) then DG = D = 1. Moreover any given change in one of 
the within-interval inequalities, then this produces a proportionate increase in the 
D-measure. 

Clearly this D- measure is a useful tool for appraising the closeness of any distribution 
to either of the two extremes fl, f2; hence we may also use this to measure the closeness 
of two arbitrary interpolations f* and f** that are bounded by ft and f2.11 In the absence 
of further information we may use D* - D** to judge whether or not the two interpolation 
methods yield results that are distinguishable. For small perturbations in the underlying 
frequency function, this method may also be extended to inequality measures that are 
monotonic transformations of (10) and (11). Suppose, for example we consider J (P), 
where 0 < f' < o, and two interpolations f* and f**. Using an obvious notation we have 

D* -Di = (I ) (I) (15) 

[1p9 

2z']D* 
JD,*] (16) 

where the approximation involved in going from (15) to (16) is legitimate if f* and f** 
are sufficiently close such that O' is locally approximately constant. Under these circum- 
stances the first bracket in (16) is constant and DJ -DJ* is proportional to D -D*. 

This procedure has a simple intuitive appeal. Any statistical measure of "goodness- 
of-fit" involves some sort of distance function, and the choice of approximate measure 
will depend, in part, on the choice of distance function. Since we are ultimately concerned 
with the income distribution as a guide to inequality we have let our choice of distance 
function in constructing a measure of "closeness of approximation" be governed by the 
principles on which we construct our standard of inequality. "Relevant" income differ- 
ences for the purposes of inequality measurement are reflected as "relevant" differences 
between two proposed frequency functions. 

Of course the D-measures are not unique, because in general inequality measures 
do not provide unique rankings. It can happen that the D-measures associated with 
different base NODI measures reveal different results because certain NODI measures 
will be particularly sensitive to perturbations in the underlying f in specific parts of the 
distribution. To see this, consider an arbitrary perturbation of f within interval 0. To 
be admissible conditions (a) and (b) in Section 2 must still hold, so that the perturbation 
can be expressed as the sum of elementary transfers of the sort: "decrease the income 
of a man with $y by an amount $dy and increase the income of a man with $y + A by 
$dy". The resulting variation in D for any one such elementary transfer is given by 

dD 19 [I [Y? ]?1[If]d (17) 

and the total effect on D is found by integrating (17) for the entire variation in f. 
Evidently the size of the total change in D for some perturbation in f will depend 

on three things: the value of f, the distribution of the population within and amongst 
the intervals, and the interval widths. The underlying distribution is important because 
of the weighting effect in constructing the total D. The interval width, of course, places 
a constraint on the size of A we need to consider in (17). Now take the parameter f8. 
Differentiation of (17) with respect to f8 reveals that for given A, if y > ,u, y + A > ,u and 
dy > 0, then dD increases with A if A > 0 and decreases with A if A < 0. On the other 
hand if y < ,u, y + A < ,u and dy > 0, dD decreases with A if A > 0 and increases with A 
if A < 0. Hence in one of the upper intervals-where we may safely assume ,u < ao < y 
and ,t < ao < y + A-the absolute size of the change in D increases with f, whereas in 
the bottom intervals-where ,u > a0+ > y and ,t > a+l > y + A-the absolute size of the 
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change in D decreases with P. Hence we expect distance based on NODI measures with 
relatively high P-values (such as the variance, with P = 1, or Theil's index with P = 0) 
to be relatively sensitive to perturbations in the top interval(s), and distance based on 
NODI measures with low (3-values (such as Atkinson's index with inequality aversion 
greater than unity-( < -1) to be sensitive to perturbations in the bottom intervals. 

However, although the D-measure may in general be sensitive to the specific 
assumptions cited above, in practice the regularity of observed frequency distributions 
may mean that the computed D-measures tend to a particular uniform value. In fact 
for some analytically tractable functional forms of the frequency distribution an amazingly 
simple and attractive rule for the value of the D-measure can be established: for the 
Gini coefficient DG is two-thirds-for every other NODI measure D9 is (approximately) 
one third.'2 However, whether this rule is more generally applicable can of course only 
be resolved by empirical investigation, which we undertake in the next two sections. 

5. EMPIRICAL RESULTS: MICRODATA 

In order to do a comparison of the behaviour of the various methods of interpolation 
that were discussed in the previous section, as opposed to simply estimating the bounds 
for the inequality measures, we first turned to microdata. Unfortunately, the large data 
sources which are used by official statistical bureaux are not usually published and 
therefore this kind of information is usually not available to us.'3 To examine therefore, 
the behaviour of these various methods we are forced to use sample survey evidence. 
The data we have used for this purpose were drawn from the Michigan Panel Study of 
Income Dynamics and relates to total family income for 6003 families in 1968.'4 

The precise questions we wanted to investigate are these. Firstly, do the interpolation 
methods from an arbitrary grouping yield results that are good approximations to results 
one would have by directly using the microdata? Secondly, is the "one third/two thirds" 
rule supported for D-measures from such arbitrary groupings? To answer these questions 
we obviously need a little preliminary clarification. As far as the choice of some arbitrary 
grouping of the data goes we decided to use simply the same grouping of incomes as 
that used by the Current Population Survey in its published tables. For the purpose of 
comparison of the inequality measures obtained from the raw data, with those obtained 
from the grouped data in the next section we concentrated on the two methods of 
interpolation 5 and 8. Our criterion of judgement was based on a confidence interval 
for each inequality measure obtained from the raw data: we examined whether the 
interpolated values from f5 and f8 did in fact fall within that interval.15 

The D-measures we used were all based on NODI measures (see equations 10 and 
11). The particular cases of these that we used were the Gini coefficient, IG, the coefficient 
of variation, [2I2]1/2, Theil's measure I and Atkinson's measure with inequality aversion 
parameter e-- , namely 

1 - [J yle-f(y)dy =1 -[(/ +/32)+1]3+ 

In fact we used these particular cardinalizations of the measures which are familiar in 
the literature, involving non-linear transformation of iT'6 This leads to a slight bias in 
the D-measures as explained in Section 4, but as the reader can readily confirm, it in 
no way alters the substantive results. 

The results related to this section appear in Table I, where the numbers in parentheses 
are the D-measures. Clearly the interpolated values lie very close to the values obtained 
from the raw data. Based on the criterion explained above they would be accepted as 
not significantly different from the directly computed values. The interpolated values 
do lie in the 95% confidence intervals and also the "one third/two thirds" rule holds 
pretty well. 
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TABLE I 
Inequality measures for the Michigan microdata 

Interpolation method 
,________________ ̂From 95% confidence 

Lower bound 5 8 Upper bound raw data interval 

Gini 0-376117 0-377808 0-377821 0-378673 0-377608 0-361995 0-393220 
(0.662) (0.666) 

C.of V. 0-754976 0762294 0-764170 0-782234 0 762358 0-748705 0-776011 
(0.268) (0*337) 

Theil 0-236886 0-239507 0-239828 0 245749 0 239345 0-209804 0-268886 
(0.296) (0.332) 

Atkinson 
0 5 0*115183 0*116788 0-116948 0-120709 0-116611 0'100279 0*132794 

(0.290) (0.319) 
1.0 0 223500 0-228343 0-228890 0-241209 0*227751 0-212958 0242265 

(0.273) (0.304) 
3 0 0 542239 0-590611 0-599016 0-701735 0 585075 0'570743 0*598061 

(0.303) (0*356) 

Note: For the grouped data there are 21 income classes. For both methods minimum income is $500. 

However the 95% confidence intervals-set up for each inequality measure are 
fairly wide. This reflects the fact that the estimated standard errors are appreciably large, 
and for this kind of significance test to be meaningful at all, these standard errors would 
have to be reduced by at least a factor of j', which in turn, implies that we must increase 
the size of the sample by a factor of 100. This limitation shows clearly the almost 
impossible task, at this stage anyway, of getting meaningful results by using microdata 
alone.18 The next best choice-which provides very reliable results-is therefore to look 
at data which have been grouped already, and where the source is such that problems 
of large standard errors will not be present. 

6. EMPIRICAL RESULTS: GROUPED DATA 

Since the available sample survey data do not provide the basis for a definitive test of 
the track record of different methods of interpolation and of the "one third/two thirds" 
rule, we turned to income distribution data from tax returns which, though they have 
limitations in terms of their economic interpretation, are at least free of the particular 
statistical problems that arose in the previous section. These data,19 for income before 
tax in Sweden, 1977, are presented in grouped form and the information made available 
to us for each interval is the number of people in each interval and the total income 
received in that interval, from which we can directly calculate the mean income of that 
interval. Since we are now working under this slight handicap, a number of issues of 
special interest arise. 

The first point of interest is the comparison of the "Crude" bounds obtained from 
methods 1 and 2 and the "refined" bounds obtained from methods 3 and 4. Gastwirth 
(1972, 1975) recommended the use of the "refined" bounds as an accurate estimation 
procedure in preference to the use of "crude" grouping bounds, using as specific examples 
iG and IP with , = 0 (Theil's inequality measure). Are these in fact sufficiently accurate? 
Obviously the strength of this method rests on the reduction in grouping error achieved 
by the refinement, and as Table II shows, this depends quite strongly on the choice of 
inequality measure, and in most cases is not particularly great (about 0-001). As inequality 
aversion increases so the 'refinement-reduction' diminishes from 43% for E = 0 001 to 
less than 1% for s = 10. For this reason we cannot rely universally on the refined bounds 
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TABLE II 

Bounds 
Inequality measure 1 3 4 2 

Gini 0339419 0340212 0341571 0341936 
C. of V. 0705777 0711199 0732457 0752516 
Theil 0198498 0199334 0202692 0204876 
Atkinson 
E= 0-001 0000O198 0000199 0000203 0000205 

0.1 0019743 0019820 0020149 0020344 
02 0039301 0039442 0040103 0040452 
05 0097170 0097458 0099293 0099957 
1.0 0191634 0192070 0197261 0198199 
1.5 0282570 0283076 0294389 0295423 
20 0366685 0367187 0387690 0388658 
2-5 0440494 0440932 0472604 0473379 
30 0502211 0502555 0545398 0545934 
3.5 0552147 0552397 0604748 0605077 
50 0648831 0648901 0716458 0716508 
8-0 0-729228 0729232 0799525 0799526 

10.0 0752706 0752707 0821331 0821331 

Notes: 
1. Column Headings 1 and 2 refer to the Crude Lower and Upper Bounds. 
2. Column Headings 3 and 4 refer to the Tight Lower and Upper Bounds. 

as accurate estimates, and furthermore we have been content to compare our interpolated 
inequality measure with the crude bounds I, and I2. 

So, secondly, let us look at the results obtained from using the various interpolation 
methods 5 through 9. Will these different methods "agree", so that we can be confident 
about the point estimate of the underlying inequality statistic-even though we do not 
have details about the distribution within intervals? Examine Table III-our "standard" 
case where the number of income classes is 19, the lowest income class having been 
omitted, and we assume the top income class to have an upper bound of 2,000,000 kr.20 

TABLE III 

Inequality measures for Swedish grouped data (standard case) 

Interpolation method 
Lower - Upper 
bound 5 6 7 8 9 bound 

Gini 0-339419 0-341095 0-341085 0-341088 0.341097 0-336965 0-341936 
(0.666) (0.662) (0.663) (0.667) (-0.975) 

C. of V. 0 705777 0-719601 0-721753 0-721602 0-721693 0-819006 0-752516 
(0.296) (0 342) (0.338) (0 340) (0.423) 

Theil 0 198498 0-200509 0-200631 0-200620 0-200649 0-219065 0-204876 
(0.315) (0-334) (0.333) (0-337) (3.225) 

Atkinson 
0*5 0097170 0-098076 0098074 0098090 0098101 0103934 0 099957 

(0.325) (0.324) (0 330) (0*334) (2.427) 
1.0 0-191634 0-193785 0-193708 0-193786 0-193807 0-201783 0-198199 

(0.328) (0.316) (0.328) (0.331) (1.546) 

3-0 0-502211 0-517145 0-516643 0-517114 0-517173 0-524327 0545934 
(0 342) (0.330) (0.341) (0.342) (0.506) 

Note: The original 20 income classes has been'truncated so as to omit the first one. 
The Top income class is assumed closed with upper bound equal to 2,000,000 kr. 
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The performance of all of the interpolation methods (with the exception of 9 which 
is discussed later) is quite remarkable. The interpolated value appears to be insensitive 
to the widely differing methods of interpolation. Examining the D-measures, given in 
parentheses, there is indeed a clear tendency for these to approximate to 2 in the case 
of the Gini coefficient and to A in the case of the other measures, confirming the results 
that are available in analytically tractable cases-see Appendix A. 

The next experiment was to test the robustness of these various measures if the 
presentation of the data had been less informative. For this purpose we originally merged 
the income classes together, keeping the first and the last intervals intact, so as to halve 
the total number of income classes to a mere ten. The results we obtained were quite 
strikingly similar to Table III. Hence we decided to go even further in merging intervals 
and progressively reduced the number of income classes to only five-see Table IV. A 
comparison with Table III shows quite obviously the robustness of the interpolated 

TABLE IV 

Inequality measures for Swedish grouped data: merged intervals 

Lower Upper 
bound 5 6* 7* 8 9 bound 

Gini 0 307397 0 342332 0-340982 0 342539 0 342570 0 296988 0 360157 
(0.662) (0 637) (0666) (0667) (-0.197) 

C. of V. 0 657669 0Q722295 0-749084 0-751322 0.751364 1.163387 0910267 
(0.256) (0.362) (0.371) (0-371) (2.002) 

Theil 0Q173988 0 203110 0-206373 0 207253 0 207334 0.370234 0-273954 
(0 291) (0.324) (0.333) (0.334) (1.963) 

Atkinson 
0 5 0*083780 0 100057 0 100786 0-101042 0*101110 0 159538 0 137812 

(0-301) (0.315) (0*319) (0.321) (1.402) 
1.0 0*160935 0*199542 0-200233 0 200564 0 200776 0 284522 0-288211 

(0*303) (0.309) (0.311) (0.313) (0.971) 
3*0 0*376905 0'543007 0*535410 0*544354 0'545582 0 615138 0'734553 

(0.464) (0*443) (0.468) (0.472) (0.666) 

Notes: 
1. The 19 income classes of Table III have been merged into 5 classes. 
2. The interpolated frequency function become negative in the last two intervals for f6 and the last three 
intervals for f7; f8 was therefore employed in these intervals. 

measures. Although the lower and upper bounds have now moved much wider apart, 
the interpolated inequality measures remain quite close to those of Table III. The 
D-measure also holds up to expectations, being still approximately 3 for the Gini and 3 

for the other inequality measures.2' Thus these various interpolation methods do produce 
robust inequality measures, more or less irrespective of the assumptions we make about 
the income distribution in the midrange. 

Does this conclusion also apply to the end intervals?22 To examine this we first 
increased the income range to include all twenty income classes. The inclusion of the 
lowest income class increases all the values of the inequality measures and, of course, 
widens the bounds. Nevertheless, the D-measure for the Gini coefficient remains close 
to 2 for all interpolation methods, although the approximation of the D-measure to 31 

for the other measures is not quite as good as before. Next we truncated the first 9 
income classes thus reducing the total number to 11. Again, as we would expect, all the 
inequality measures drop in value, but now all the D-measures conform closely to the 
"one third/two thirds" rule. Finally, we examined the top income class, reducing the 
assumed upper bound to 1,500,000 kr. and then increasing it to 4,000,000 kr. The 
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difference observed either in the new lower and upper bounds or in the inequality 
measures based on the interpolation methods was negligible and the results were almost 
identical to those of the "Standard Case", the only exception being the coefficient of 
variation which, as we know is very sensitive to the dispersion of the data in the upper 
tail. 

As we have seen, the inequality measure estimated either from the "bounds" or 
from the interpolation methods is sensitive to the particular assumption made about the 
lower tail of the income distribution. However, with this one exception, our results have 
clearly shown that the various methods of interpolation produce inequality measures 
which are robust with regard to a wide range of assumptions about the income distribution. 
The closeness of the values obtained from these various methods suggests that there is 
really not much to choose between them and that one might just as well stick to the 
simplest one, the "split histogram" method. In this regard, it is interesting to compare 
method 8 with method 9 which we have neglected so far-"split" and "simple" his- 
tograms. Simple histograms, to which students of applied statistics are introduced at a 
very early stage, produce awful results-see for example Table III-because the method 
is inconsistent with the condition that the mean of each interval should be equal to AO. 
Split histograms on the other hand only need a tiny amount more work and produce 
amazingly good results. 

However the D-measures obtained in our results show that one can go even further 
than this and simply estimate the lower and upper bounds for each inequality measure, 
then use the 2 rule to get an estimate for the Gini measure, and use the 3 rule for the others. 

7. SUMMARY AND CONCLUSIONS 

We have demonstrated two remarkable results that should eliminate a lot of the 
pother concerning the estimation of inequality measures from grouped data. 

1. Interpolation in empirical income distributions can be performed just as well by 
a simple discontinuous function as by more elaborate methods. The simplest, universally 
feasible, such function is the "split histogram"-the step function illustrated in Figure 
2 which provides as good results as more sophisticated functions but with much less 
complications in computation. All one has to do within any interval 0 is to let the 
frequency (histogram height) be kolo to the left of the group mean and ko/ll to the right 
of the group mean where ko n6/n [ao+1-a6] and l,[a+?-, ][,u-a6]. 

2. In most cases the "one third/two thirds" rate produces superb results anyway, 
and one may disperse with even the minimal computation required for split histograms. 
For the Gini coefficient this means one takes 2 times the upper bound plus 3 times the 
lower bound; for every other NODI measure (which means virtually every other inequality 
measure worth considering in this context) one takes - times the upper bound plus 3 

times the lower bound. 
Of course there is a qualification to be made to these strong results since there are 

departures from the "one third" rule under some assumptions concerning the lowest 
income interval. Here the problem is that the upper grouping bound is obviously 
remarkably sensitive to the choice of a1 when inequality measures with high inequality 
aversion are used. This illustrates the care which must be taken over any arbitrary 
assumption about the lower limit of this interval rather than any basic weakness in our 
simple interpolation rules. Indeed it is interesting to note that under all the experiments 
carried out the split histogram (method 8) performed as well as any of the other methods 
of interpolation. By contrast, although the particular assumption about the assumed 
upper bound to the top interval can significantly affect the upper bound of the inequality 
measure, nevertheless the interpolated inequality measures (with the possible exception 
of the coefficient of variation) remain remarkably robust. In virtually all cases the "two 
thirds" rule for the Gini remains unchallenged. 
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There are three important lessons for researchers into inequality, further discussion 
of which is beyond the scope of this paper. Firstly if one chooses measures with high 
inequality aversion, this may entail unreliable and possibly unusable empirical estimates 
from grouped data. Secondly, as we illustrated in Section 5, where the data are from a 
sample survey, for some inequality measures the sampling error may be so large as to 
swamp grouping error, and may render any interpolation method ineffective. Thirdly, 
without some consistent and feasible method of interpolation, empirical inequality trends 
may be meaningless where the interval grid changes (look at Tables III and IV).23 

Finally, there is an important lesson for compilers of official statistics. This isn't the 
usual plea for more data (however welcome that may be). Presumably for most statistical 
bureaux the cost of publishing data is an increasing function of the number of numbers. 
What we have seen is that a very reliable result can be found using relatively few published 
numbers if they are the right ones. So if one has to make the choice between producing 
detailed information about either the middle income ranges or about each tail, the latter 
should be chosen. Moreover if the choice is between producing a breakdown of the 
distribution by 20 intervals without the interval means or a breakdown by 10 intervals 
with the interval means, again the latter option should be taken. 

APPENDIX A 

Properties of the 'split histogram' method 

It has been noted in the text that in principle the histogram may be split at any arbitrary 
point in [ao, a0+1). For convenience we shall take the point of split as bo = ,uo 

no a0+1- .t0 
f8(Y) 

no 
ao_g -pI y E- [ao, goe) n [ao+l - ao][lio - aoo (A.1) 

n,a, go - ao 
- ae][a1 - q, Y E [go, ao+1). n [ao+l - ao[ao+l go]l 

For convenience write ao =a, a0+1 b, ,uo = m, let the true density be +(y), and consider 
the class of NODI measures that is ordinally equivalent to lo h (y)f (y) dy where h(*) 
is a convex function. 

Consider the departure of f8(Y) from +(y): we can express the resulting D-measure 
as a linear combination of the departure of f8(y) from +(y) in each interval 0, = 1, 2,. . ., w 
so we may take one such interval and look at its contribution to the D-measure resulting 
from the use of f8(Y) rather than f(y). That quantity may be written 

b 

=| h(y)[f8(y) - f(y)]dy (A.2) 

b-m a-m 

=J| h(y +m)[q -f(y +m)]dy-J h(y +m)[p-(y +m)]dy (A.3) 

using (A.1). Evaluating (A.3) using a Taylor expansion we have 

8 = [b - m]h(m)[q - f(m)] - [a - m]h(m)[p - f(m)] 

+ [b i]2 [h'(m)[qf. (m)]-h(m)f'(m)] 
2! 

+ [a_M2! [h'(m) [p - fi(m)] -h (m)ufi'(m)] +[ ] (A.4) 
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Using the definitions of p and q in (A. 1), we find that (A.4) yields 

8 = h(m) [n-(m)[b-a]] +[b-a][m- 2a ][h(m) I'(m) + fi(m)h'(m)]+[ . 

(A.5) 

In order to examine the expansion (A.5), consider first of all the neglected higher- 
order terms. If we restrict attention to scale-independent NODI measures, h(y) = 

y +1 / [,l3 + 1], and a, b, m may be written as proportions of the mean ,. As long as 
h", if" remain bounded we may neglect the higher order terms. For 0 < a < b < 1 this 
may present no problem, except for some frequency distributions that peak sharply 
somewhere below the mean. For a > 1, there may be a problem with convergency in 
the top interval if it is open. However, even here it may be legitimate to neglect the 
hliher order terms. For example if f(y) is Paretian, h(y)f(y) will be proportional to 
y , and it can be seen that convergence of higher order terms will occur if (3 < - 2. 

Leaving aside the problem of the top, open interval (a problem which, as we have 
seen occurs with many interpolation methods), let us examine the likely sign and 
magnitude of 8. Clearly 8 will be small 

(i) if the interval width is small, 
(ii) if the interval mean is located near the midpoint, 
(iii) if d/dy (h (y)f0(y)), evaluated at the interval mean, is small, 
(iv) if the frequency at the interval mean approximately equals the height of the 

regular histogram. 

Now if f'(y)<0 throughout the interval, m <[a +b]/2 and hence ip (m)> 
0f([a + b]/2. Furthermore, if f(y) is concave over the interval, 0f([a + b]/2)> 
(no/n)/[b - a]. Hence if f' < 0 and f" < 0, 8 < 0. Conversely, if ' > 0 and f" > 0, 8 > 0. 
So if tf(m)h'(m)+h(m)tP'(m) is positive. The underlying distribution has a smooth, 
unimodal shape, the split histogram will underestimate inequality in intervals just to the 
right of the mode, and will overestimate inequality in the bottom intervals. Otherwise 
the combined effect will be ambiguous. 

The D-measure for NODI measures under the split histogram 

We begin with additive functions of the form (14), which we know can be decomposed 
as (16). Consider inequality within an arbitrary interval [a, b) for which the mean is m. 
We know from (2) that maximum inequality within the interval is 

2 
=8 +2 [b- am] +b- ] -1]. (A.6) 

Since we are taking a single interval, mininum inequality is evidently zero. If we assume 
that distribution 8-the split histogram-holds then integration over [a, ;4) and [A, b) 
reveals that inequality within the interval is 

IS 13(32[[3+2][ b][ alii2i]a 1+ 

I* =,B +,l62 [[,8]+2][b -a]] - m 1- [-] ] +bm [[] -]m1 
(A.7) 

Introduce the variables x 31-(a/m), z-(b/m)-1; clearly 0<x<1 and 0<z for 
non-trivial distributions. We shall also assume that the interval width is not too large, 
so that b <2m. Substitution in (A.6) and (A.7) and a little rearrangement yields, 
respectively 

I* [,3 +,82][x +z] =z[[l_-x]+1-1]+x[[1 +Z]3+1_ 1] (A.8) 
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I* [p +p2][X +Z] = Z[ 
- 3+2 ] +[ + Z]3+2 _ 1 _(A.9) 

Expanding (A.8) yields 
2 3 

z-[l + 1]x +,l[, + 1] !-[p - l],[ + 1] -+*- 
2! 

~~~~3! 
2 3 

Simplifying (A.10) we see that (A.8) can be rewritten 

I* = zx +[,l3 - 1] zx[z -X ]+** (A.11) 2 
~~~~~3! 

Expanding (A.9) likewise yields 

2 3 

+x[l +[ + 1] +p[p +1]L+[ -1]p[ +1]-+* - (A12) 2 ! 3! 4! 

Simplifying (A. 12) we see that (A.9) can be rewritten 

zx [z- X] 
I* = -+ +[,l3-l]zx [4]+ .(A.13) 8 3 4! 

Clearly for small z and x and for , close to unity the last term in (A. 11) and in (A. 13) 
becomes negligible. In particular, if the distribution within the interval has its mean 
at the midpoint (a + b)/2, then z = x and all the even terms in the series (A.10) and 
(A. 12) vanish. Under such circumstances we see immediately that I* -NI*. Hence if 
every interval has the split histogram distribution the D-measure given in (17) must be 
approximately 3. 

Now consider the Gini coefficient which is decomposable as in (15). Evaluating 
maximum inequality within the interval [a, b] using (A.1) we find 

I* [m-a][b-m] 
m[b-a] (A.14) 

Now consider Gini inequality in [m, b) and the Gini that would result if all the po1pulation 
in [a, b) were to be concentrated in the appropriate proportions at '[a + m] and jjm + b]. 
These correspond to the three terms on the RHS of the expression below 

I* b- 2[M a] m ] 2b-rn [b-m][m-a] 
8[b- a [ ]+[b-ab- -+[ 2m[b-a] (A.15) 

Evaluating (A. 15) we get immediately 

I* 3[b-m][m-a] 
2m[b-a] 

whence I* ='3I*. Hence if every interval has the split histogram distribution, the 
D-measure given in (17) must be exactly 23. 
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Estimation procedures 

To compute Ao, a0 in (5) note that in order to satisfy conditions (a) and (b) we must have 

no=A[a-'-a+l (A.16) 
n 

a1 [a 1-a ] (A. 17) 

the parameter values are then found as the values of A, a which satisfy (A. 16) and (A. 17). 
To calculate TyO0, . . ., 704 in (6) the following conditions on the spline were imposed. 

(i) Conditions (a) and (b) must be satisfied in interval 0-this yields two equations like 
(A.16) and (A.17) for the quartic interpolation. (ii) The right-hand ordinate at a0+1 
must equal the previously computed left-hand ordinate from interval 0+1, the spline 
being commenced from the upper tail with knots preassigned at the interval boundaries. 
Where the assumption of a finite a,,+, was used it was assumed that f6(a,+,) = 0. (iii) 
The right-hand derivative of f6 at a0+1 must equal the previously computed left-hand 
derivative from interval 0+1. If the top interval is finite we assume f6 (a,,+1) =0. 
Conditions (ii) and (iii) determine two further equations. (iv) In order to reduce the 
chance of the spline intersecting the horizontal axis in interval 0, the extension of the 
spline function into interval 0 - 1 was constrained to go through the point ([aO_ + a,]/2, 
no-/n[ao -a,-]). It was found that cubic splines, which of course do not use this fourth 
restriction, frequently violated the horizontal axis and were therefore unsatisfactory. A 
check was routinely made for violation of the horizontal axis by the quartic spline; on 
the rare occasions where this occurred, linear interpolation was used instead. 

Linear estimates were found by solving for yO0 and yoi from the equations for no/n 
and gu analogous to (A.16), (A.17). If the straight line intersected the horizontal axis, 
the split histogram was used. 

TABLE V 

Income groups Total income Total tax payers 
('000 kroner) for each interval in the interval 

0 - 118,073 
0*1-4'9 396,477 155,842 
5*0-9*9 2,081,416 278,416 
100-14-9 6,880,865 539,659 
15*0-19 9 9,471,991 544,600 

20*0-24.9 9,557,162 425,362 
25*0-29-9 11,065,055 402,923 
30.0-34.9 12,420,679 382,345 
35*0-39'9 13,801,434 368,096 
40.0-44.9 17,025,900 400,028 

45 0-49 9 21,706,656 456,660 
50*0-54*9 24,163,123 460,530 
55*0-59'9 22,013,271 383,588 
60 0-69 9 30,933,655 480,228 
70.0-79*9 17,912,913 240,578 

80 0-99 9 18,529,954 209,900 
100'0-119'9 9,018,675 83,030 
120 0-149 9 6,618,096 49,969 
150 0-199 9 4,792,727 28,149 
200*0-499.9 4,184,993 16,287 

500.0 773,818 892 
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APPENDIX B 

The data used in Section 3 of this paper are presented in Table V. The variable we 
have used is total income for the Income Year 1977. Column 3 indicates frequency of 
each income class. Column 2 is the sum of the incomes of those falling in each particular 
income class. The source of these data is Table 1 (p. 22) of Statistiska Meddelanden 
(N1978:22) published by the National Central Bureau of Statistics, Fack, S102 50 
Stockholm, Sweden. 

First version received August 1980; final version accepted October 1981 (Eds.). 
We are grateful to the Suntory-Toyota foundation and the SSRC for financial support. 

NOTES 
1. See for example Cowell (1977), Gastwirth (1972, 1975). 
2. Surprisingly this issue is often ignored. The non-negative frequency requirement is formally equivalent 

to requiring that the Lorenz curve be convex. For example, Kakwani's (1976) empirical work does not deal 
with this fundamental issue. See also Gastwirth and Glauberman (1976) who do take account of this problem. 

3. See Gastwirth (1972, 1975). 
4. See for example Gastwirth and Glauberman (1976), Needleman (1978), Kakwani (1976). 
5. The most convenient assumption is that bo = A, since then Property 1 always holds. We have made 

this assumption throughout. 
6. See Appendix A. 
7. In Section 6 we examine a number of possible values for L including two extreme cases. See also 

Needleman (1978). 
8. All the calculations reported in Section 6 were also performed using the assumption of a Paretian 

upper tail. However, since the results were so similar to these in Tables I, III, and IV we have not reported 
them separately. 

9. See Cowell and Shorrocks (1980). 
10. See Cowell (1980), Cowell and Kuga (1981a, b) which also discuss the special cases / = 0, ,B = -1. 
11. This is similar to the goodness-of-fit test suggested by Gastwirth and Smith (1972). 
12. In Appendix A we examine this rigorously for f8, the split histogram distribution. We are indebted 

to Professor D. G. Champernowne who first suggested the 2 and 3 rules in an unpublished manuscript, and 
who has shown that the 3 rule will be approximately true for a number of measures of the I type in the case 
of a "cubic" interpolated Lorenz curve. 

13. It is interesting to note, however, that in the large sample results reported by Gastwirth (1972), the 
"3 rule" for the Gini is confirmed. 

14. For further confirmation see A Panel Study of Income Dynamics (1978), Procedure and Tape Codes 
1977 Interviewing Year, WA VE X, A Supplement, Institute for Social Research, University of Michigan. 

15. The standard errors for the inequality measures Io were derived from standard formulae on the 
standard errors of moments, and the standard error for IG was found from a conventional approximation 
using the assumption of asymptotic normality-see Kendall and Stuart, pp. 228-241. Other interpolation 
methods were also utilized, but since the results were so similar to those for f5 and f8, these are not separately 
reported: Moreover, we computed the Atkinson index for a wide range. 

16. Other "non-NODI" measures such as the logarithmic variable and the relative mean deviation were 
also computed but are not reported here. Similar results are obtained, however. For further discussion of all 
of these measures see Cowell (1977). 

17. We had tried other groupings as well, but the results are unchanged and therefore not reported. 
18. To see this in perspective, note that the sample size of the U.S. Current Population Survey is "only" 

of the order of 50,000! 
19. See Appendix B for a description of the data source. 
20. Note that in Tables III and IV the first and last columns are the lower and upper bounds I1, I2 

respectively. 
21. The obvious exception is the Atkinson measure with inequality aversion parameter equal to 3. 

However such a value for this parameter is really very high and implies great sensitivity to the detail of what 
happens within the lower interval. We have included this as an extreme case of the NODI measures, and it 
is to be expected that here, and in the analysis of the sensitivity of the bottom interval, significant departures 
from the 3 rule are evident for inequality aversion values of 3 and above. For values less than 3, the associated 
D-measures conformed to those for other inequality measures. 

22. Tables of the results referred to in this paragraph are available from the authors on request. 
23. This issue has also been examined by Petersen (1979). 
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