Table E1: Illustration of the $\mu(\mathrm{g})$ steady-state formula
(proposition 3: exogenous saving model, closed economy, equations (E1)-(E4))
($b_{y}{ }^{*}=\mu^{*} m^{*} \beta^{*}$ computed for fixed $\beta^{*}=s / g=600 \%$, i.e. assuming that s_{k} and s_{L} adjusts; μ^{*} unaffected by β^{*})

$\begin{gathered} \alpha \\ 30 \% \\ \hline \mathrm{~A} \end{gathered}$	$\begin{gathered} \hline 1-\alpha \\ 70 \% \\ \hline H \end{gathered}$	$\begin{gathered} \hline \beta^{*} \\ 600 \% \\ \hline R \end{gathered}$	Class savings$\left(s_{L}=0 \& s_{\mathrm{K}}>0\right)$		Uniform savings$\left(s_{L}=s_{K}=s\right) \& \rho=1$		$\begin{aligned} & \text { Partial class } \\ & \text { savings (} s_{\llcorner } / \mathrm{s}<1 \text {) } \\ & \& \rho=1 \end{aligned}$		Uniform savings $\left(\mathrm{s}_{\mathrm{L}}=\mathrm{s}_{\mathrm{K}}=\mathrm{s}\right)$ \& replacement rate $\rho<1$					
20	30	60			$\mathrm{S}_{\mathrm{L}} / \mathrm{s}$	50\%	ρ	50\%	ρ	0\%				
D	$\mathrm{I}=\mathrm{D}-\mathrm{H}$	g	$\mu^{*}=\mu(\mathrm{g})$	$\mathrm{b}_{\text {y }}{ }^{\text {* }}$			$\mu^{*}=\mu(\mathrm{g})$	$\mathrm{b}_{\mathrm{y}}{ }^{\text {* }}$	$\mu^{*}=\mu(\mathrm{g})$	$\mathrm{b}_{\mathrm{y}}{ }^{\text {* }}$	$\mu^{*}=\mu(\mathrm{g})$	$\mathrm{b}_{\mathrm{y}}{ }^{\text {* }}$	$\mu^{*}=\mu(\mathrm{g})$	$\mathrm{b}_{\mathrm{y}}{ }^{\text {a }}$
60	30	0\%	133\%	20\%	133\%	20\%	133\%	20\%	133\%	20\%	133\%	20\%		
70	40	0\%	167\%	20\%	167\%	20\%	167\%	20\%	167\%	20\%	167\%	20\%		
80	50	0\%	200\%	20\%	200\%	20\%	200\%	20\%	200\%	20\%	200\%	20\%		
60	30	1\%	133\%	20\%	129\%	19\%	131\%	20\%	129\%	19\%	129\%	19\%		
70	40	1\%	167\%	20\%	156\%	19\%	161\%	19\%	153\%	18\%	150\%	18\%		
80	50	1\%	200\%	20\%	181\%	18\%	190\%	19\%	176\%	18\%	168\%	17\%		
60	30	2\%	133\%	20\%	125\%	19\%	129\%	19\%	125\%	19\%	125\%	19\%		
70	40	2\%	167\%	20\%	147\%	18\%	156\%	19\%	142\%	17\%	136\%	16\%		
80	50	2\%	200\%	20\%	166\%	17\%	181\%	18\%	156\%	16\%	142\%	14\%		
60	30	3\%	133\%	20\%	122\%	18\%	127\%	19\%	122\%	18\%	122\%	18\%		
70	40	3\%	167\%	20\%	139\%	17\%	151\%	18\%	132\%	16\%	123\%	15\%		
80	50	3\%	200\%	20\%	153\%	15\%	173\%	17\%	140\%	14\%	120\%	12\%		
60	30	4\%	133\%	20\%	119\%	18\%	125\%	19\%	119\%	18\%	119\%	18\%		
70	40	4\%	167\%	20\%	133\%	16\%	147\%	18\%	123\%	15\%	112\%	13\%		
80	50	4\%	200\%	20\%	143\%	14\%	166\%	17\%	127\%	13\%	102\%	10\%		
60	30	5\%	133\%	20\%	116\%	17\%	123\%	18\%	116\%	17\%	116\%	17\%		
70	40	5\%	167\%	20\%	127\%	15\%	143\%	17\%	116\%	14\%	102\%	12\%		
80	50	5\%	200\%	20\%	135\%	13\%	159\%	16\%	116\%	12\%	86\%	9\%		
60	30	10\%	133\%	20\%	107\%	16\%	116\%	17\%	107\%	16\%	107\%	16\%		
70	40	10\%	167\%	20\%	111\%	13\%	127\%	15\%	91\%	11\%	66\%	8\%		
80	50	10\%	200\%	20\%	112\%	11\%	135\%	13\%	83\%	8\%	40\%	4\%		

Table E2: Illustration of the $\mu(\mathrm{g}, \mathrm{r})$ steady-state formula (proposition 4: exogenous saving model, open economy, equation (E5)) (case $\rho=1$) $\left(b_{y}{ }^{*}=\mu^{*} m^{*} \beta^{* *}\right.$ computed for fixed $\beta^{* *}=s_{L} /\left[g-r\left(s_{K}-s_{L}\right)\right]=600 \%$, i.e. assuming that s_{L} adjusts; μ^{*} unaffected by $\beta^{* *}$)										
$\begin{gathered} \mathrm{s}_{\mathrm{K}} \\ 20 \% \\ \hline \end{gathered}$	$\begin{gathered} \beta^{* *} \\ 600 \% \end{gathered}$	$\mu(\mathrm{g}, \mathrm{r})$ for given r			$\mu(\mathrm{g}, \mathrm{r})$ for given g			$\mu(\mathrm{g}, \mathrm{r})$ for given $\mathrm{r}-\mathrm{g}$		
$\begin{gathered} \hline \mathrm{A} \\ 20 \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{H} \\ 30 \end{gathered}$	r	5\%		g	2\%		r-g	3\%	
D	I = D-H	g	$\mu^{*}=\mu(\mathrm{g}, \mathrm{r})$	$\mathrm{b}_{\mathrm{y}}{ }^{*}$	r	$\mu^{*}=\mu(\mathrm{g}, \mathrm{r})$	$\mathrm{b}_{\mathrm{y}}{ }^{\text {r }}$	g	$\mu^{*}=\mu(\mathrm{g}, \mathrm{r})$	$\mathrm{b}_{\mathrm{y}}{ }^{*}$
60	30	0\%	133\%	20\%	0\%	122\%	18\%	0\%	133\%	20\%
70	40	0\%	167\%	20\%	0\%	140\%	17\%	0\%	167\%	20\%
80	50	0\%	200\%	20\%	0\%	155\%	15\%	0\%	200\%	20\%
60	30	1\%	133\%	20\%	1\%	123\%	18\%	1\%	132\%	20\%
70	40	1\%	167\%	20\%	1\%	142\%	17\%	1\%	163\%	20\%
80	50	1\%	200\%	20\%	1\%	158\%	16\%	1\%	194\%	19\%
60	30	2\%	127\%	19\%	2\%	124\%	19\%	2\%	127\%	19\%
70	40	2\%	152\%	18\%	2\%	144\%	17\%	2\%	152\%	18\%
80	50	2\%	174\%	17\%	2\%	162\%	16\%	2\%	174\%	17\%
60	30	3\%	122\%	18\%	3\%	125\%	19\%	3\%	123\%	18\%
70	40	3\%	140\%	17\%	3\%	147\%	18\%	3\%	142\%	17\%
80	50	3\%	155\%	15\%	3\%	166\%	17\%	3\%	158\%	16\%
60	30	4\%	118\%	18\%	4\%	126\%	19\%	4\%	119\%	18\%
70	40	4\%	131\%	16\%	4\%	149\%	18\%	4\%	134\%	16\%
80	50	4\%	141\%	14\%	4\%	170\%	17\%	4\%	146\%	15\%
60	30	5\%	114\%	17\%	5\%	127\%	19\%	5\%	116\%	17\%
70	40	5\%	124\%	15\%	5\%	152\%	18\%	5\%	128\%	15\%
80	50	5\%	130\%	13\%	5\%	174\%	17\%	5\%	136\%	14\%
60	30	10\%	104\%	16\%	10\%	133\%	20\%	10\%	106\%	16\%
70	40	10\%	106\%	13\%	10\%	167\%	20\%	10\%	109\%	13\%
80	50	10\%	107\%	11\%	10\%	200\%	20\%	10\%	111\%	11\%

Table E4: Illustration of the steady-state formula $\mu(\rho)$ formula (proposition 7: dynastic model, equation (E10)) (by ${ }^{*}=\mu^{*} m^{*} \beta^{*}$ computed for fixed $\beta^{*}=\alpha / r^{*}=600 \%$, i.e. assuming that θ and/or σ adjust; μ^{*} unaffected by β^{*})												
$\begin{gathered} \alpha \\ 30 \% \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{r}^{*} \\ 5 \% \\ \hline \end{gathered}$	$\begin{gathered} \beta^{*} \\ 600 \% \end{gathered}$	$\mu^{*}=\bar{\mu}\left[1-\frac{(1-\rho)(1-\alpha) \bar{\beta}_{\mathrm{L}}}{\beta^{*}}\right]$									
$\begin{aligned} & \text { A } \\ & 20 \end{aligned}$	$\begin{aligned} & \hline \mathrm{H} \\ & 30 \end{aligned}$	$\begin{gathered} \mathrm{R} \\ 60 \end{gathered}$	ρ	100\%	ρ				ρ	30\%	ρ	0\%
D	$\mathrm{I}=\mathrm{D}-\mathrm{H}$	g	$\mu^{*}=\mu(\mathrm{\rho})$	$\mathrm{b}_{\mathrm{y}}{ }^{*}$	$\mu^{*}=\mu(\mathrm{\rho})$	$\mathrm{b}_{\mathrm{y}}{ }^{*}$	$\mu^{*}=\mu(\mathrm{\rho})$	$\mathrm{b}_{\mathrm{y}}{ }^{\text {* }}$	$\mu^{*}=\mu(\mathrm{\rho})$	$\mathrm{b}_{\mathrm{y}}{ }^{*}$	$\mu^{*}=\mu(\rho)$	$\mathrm{b}_{\mathrm{y}}{ }^{\text {a }}$
60	30	0\%	133\%	20\%	133\%	20\%	133\%	20\%	133\%	20\%	133\%	20\%
70	40	0\%	167\%	20\%	156\%	19\%	139\%	17\%	128\%	15\%	111\%	13\%
80	50	0\%	200\%	20\%	177\%	18\%	143\%	14\%	121\%	12\%	86\%	9\%
60	30	1\%	133\%	20\%	133\%	20\%	133\%	20\%	133\%	20\%	133\%	20\%
70	40	1\%	167\%	20\%	155\%	19\%	137\%	16\%	125\%	15\%	107\%	13\%
80	50	1\%	200\%	20\%	175\%	18\%	138\%	14\%	114\%	11\%	77\%	8\%
60	30	2\%	133\%	20\%	133\%	20\%	133\%	20\%	133\%	20\%	133\%	20\%
70	40	2\%	167\%	20\%	154\%	18\%	134\%	16\%	122\%	15\%	102\%	12\%
80	50	2\%	200\%	20\%	173\%	17\%	134\%	13\%	107\%	11\%	67\%	7\%
60	30	3\%	133\%	20\%	133\%	20\%	133\%	20\%	133\%	20\%	133\%	20\%
70	40	3\%	167\%	20\%	153\%	18\%	132\%	16\%	118\%	14\%	97\%	12\%
80	50	3\%	200\%	20\%	172\%	17\%	129\%	13\%	101\%	10\%	58\%	6\%
60	30	4\%	133\%	20\%	133\%	20\%	133\%	20\%	133\%	20\%	133\%	20\%
70	40	4\%	167\%	20\%	152\%	18\%	130\%	16\%	115\%	14\%	93\%	11\%
80	50	4\%	200\%	20\%	170\%	17\%	125\%	13\%	95\%	10\%	51\%	5\%
60	30	5\%	133\%	20\%	133\%	20\%	133\%	20\%	133\%	20\%	133\%	20\%
70	40	5\%	167\%	20\%	151\%	18\%	128\%	15\%	112\%	13\%	89\%	11\%
80	50	5\%	200\%	20\%	169\%	17\%	122\%	12\%	91\%	9\%	44\%	4\%
60	30	10\%	133\%	20\%	133\%	20\%	133\%	20\%	133\%	20\%	133\%	20\%
70	40	10\%	167\%	20\%	149\%	18\%	122\%	15\%	104\%	13\%	78\%	9\%
80	50	10\%	200\%	20\%	169\%	17\%	123\%	12\%	92\%	9\%	45\%	5\%

Table E5: Illustration of the λ formula and $b_{y}{ }^{*}=b_{y}(g, r)$ formula (propositions 8-9: wealth-in-the-utility-function model, equations (E12)-(E13) and (E17))										
A	H									
20	30									
R	1-a		ρ	$\mathrm{s}_{\text {B }}$	ρ	$\mathrm{s}_{\text {B }}$	ρ	s_{B}	ρ	$\mathrm{s}_{\text {B }}$
60	70\%		100\%	10\%	80\%	10\%	50\%	10\%	0\%	10\%
D	$\mathrm{I}=\mathrm{D}-\mathrm{H}$	r-g	λ	$\mathrm{b}_{\mathrm{y}}{ }^{*}$	λ	$\mathrm{b}_{\mathrm{y}}{ }^{*}$	λ	$\mathrm{b}_{\mathrm{y}}{ }^{\text {a }}$	λ	$\mathrm{b}_{\mathrm{y}}{ }^{*}$
60	30	0\%	100\%	8\%	100\%	8\%	100\%	8\%	100\%	8\%
70	40	0\%	100\%	8\%	100\%	8\%	100\%	8\%	100\%	8\%
80	50	0\%	100\%	8\%	100\%	8\%	100\%	8\%	100\%	8\%
60	30	1\%	91\%	10\%	91\%	10\%	91\%	10\%	91\%	10\%
70	40	1\%	96\%	10\%	97\%	11\%	98\%	11\%	101\%	11\%
80	50	1\%	102\%	11\%	103\%	11\%	105\%	12\%	111\%	12\%
60	30	2\%	84\%	13\%	84\%	13\%	84\%	13\%	84\%	13\%
70	40	2\%	94\%	15\%	96\%	15\%	98\%	15\%	103\%	16\%
80	50	2\%	106\%	17\%	109\%	17\%	114\%	18\%	125\%	20\%
60	30	3\%	79\%	18\%	79\%	18\%	79\%	18\%	79\%	18\%
70	40	3\%	94\%	22\%	96\%	22\%	100\%	23\%	106\%	24\%
80	50	3\%	114\%	26\%	118\%	27\%	126\%	29\%	143\%	33\%
60	30	4\%	74\%	26\%	74\%	26\%	74\%	26\%	74\%	26\%
70	40	4\%	96\%	33\%	99\%	34\%	103\%	36\%	111\%	39\%
80	50	4\%	126\%	44\%	131\%	46\%	142\%	49\%	166\%	58\%
60	30	5\%	71\%	41\%	71\%	41\%	71\%	41\%	71\%	41\%
70	40	5\%	100\%	57\%	103\%	58\%	108\%	61\%	118\%	67\%
80	50	5\%	142\%	81\%	149\%	85\%	163\%	92\%	194\%	110\%

Table E6: Illustration of the $b_{y}{ }^{*}, \beta^{*}$ and μ^{*} formulas
(propositions 8-9, wealth-in-the-utility-function model, equations (E11)-(E15)) ($\rho=1$)

$$
\text { (open economy, r=5\%, } \theta=2 \%, \sigma=5, s_{B}=10 \% \text {) }
$$

A 20	H 30	θ 2%	$\begin{gathered} \sigma \\ 5 \end{gathered}$	$\begin{gathered} \bar{r} \\ 8 \% \end{gathered}$	$\begin{gathered} r \\ 5 \% \end{gathered}$											
R	a	1-a	ρ	s_{B}												
60	30\%	70\%	100\%	10\%												
D	$\mathrm{I}=\mathrm{D}-\mathrm{H}$	g	r	r-g	s_{B}	λ	$\mathrm{b}_{\mathrm{y}}{ }^{*}$	g_{c}	s_{L}	$(1-\alpha) \beta_{L}{ }^{*}$	$\beta_{\mathrm{B}}{ }^{\text {* }}$	$\beta_{\mathrm{p}}{ }^{\text {* }}$	$\beta_{K}{ }^{*}=\alpha / r$	μ^{*}	β^{*}	\hat{b}_{y} *
60	30	0\%	5\%	5\%	10\%	71\%	41\%	1\%	17\%	356\%	993\%	1349\%	600\%	120\%	981\%	29\%
70	40	0\%	5\%	5\%	10\%	100\%	57\%	1\%	18\%	561\%	1390\%	1951\%	600\%	145\%	1164\%	34\%
80	50	0\%	5\%	5\%	10\%	142\%	81\%	1\%	19\%	857\%	1977\%	2834\%	600\%	171\%	1339\%	38\%
60	30	1\%	5\%	4\%	10\%	74\%	26\%	1\%	5\%	226\%	557\%	782\%	600\%	132\%	717\%	24\%
70	40	1\%	5\%	4\%	10\%	96\%	33\%	1\%	4\%	336\%	720\%	1056\%	600\%	159\%	860\%	27\%
80	50	1\%	5\%	4\%	10\%	126\%	44\%	1\%	3\%	489\%	941\%	1430\%	600\%	184\%	1011\%	31\%
60	30	2\%	5\%	3\%	10\%	79\%	18\%	1\%	-11\%	108\%	341\%	449\%	600\%	160\%	486\%	19\%
70	40	2\%	5\%	3\%	10\%	94\%	22\%	1\%	-15\%	143\%	409\%	553\%	600\%	195\%	566\%	22\%
80	50	2\%	5\%	3\%	10\%	114\%	26\%	1\%	-19\%	194\%	494\%	689\%	600\%	227\%	659\%	25\%
60	30	3\%	5\%	2\%	10\%	84\%	13\%	1\%	-32\%	-1\%	222\%	221\%	600\%	238\%	272\%	16\%
70	40	3\%	5\%	2\%	10\%	94\%	15\%	1\%	-41\%	-30\%	248\%	219\%	600\%	336\%	270\%	18\%
80	50	3\%	5\%	2\%	10\%	106\%	17\%	1\%	-49\%	-60\%	280\%	220\%	600\%	452\%	271\%	20\%
60	30	4\%	5\%	1\%	10\%	91\%	10\%	1\%	-58\%	-106\%	150\%	44\%	600\%	903\%	61\%	14\%
70	40	4\%	5\%	1\%	10\%	96\%	11\%	1\%	-75\%	-194\%	159\%	-36\%	600\%	-1470\%	-52\%	15\%
80	50	4\%	5\%	1\%	10\%	102\%	11\%	1\%	-92\%	-297\%	168\%	-130\%	600\%	-514\%	-204\%	17\%
60	30	5\%	5\%	0\%	10\%	100\%	8\%	1\%	-91\%	-212\%	106\%	-106\%	600\%	-294\%	-164\%	12\%
70	40	5\%	5\%	0\%	10\%	100\%	8\%	1\%	-123\%	-361\%	106\%	-255\%	600\%	-153\%	-445\%	14\%
80	50	5\%	5\%	0\%	10\%	100\%	8\%	1\%	-156\%	-539\%	106\%	-433\%	600\%	-108\%	-894\%	16\%

Table E7: Illustration of the $b_{y}{ }^{*}, \beta^{*}$ and μ^{\star} formulas

(propositions 8-9, wealth-in-the-utility-function model, equations (E11)-(E15)) ($\rho=1$)
(open economy, $\mathrm{r}=5 \%, \mathrm{~s}_{\mathrm{B}}=10 \%, \theta$ and σ adjust so that $\mathrm{g}_{\mathrm{c}}=\mathrm{g}$)

A	H															
R	α	1-a	ρ	s_{B}												
60	30\%	70\%	100\%	10\%												
D	$\mathrm{I}=\mathrm{D}-\mathrm{H}$	g	r	r-g	s_{B}	λ	$\mathrm{b}_{\mathrm{y}}{ }^{*}$	g_{c}	s_{L}	$(1-\alpha) \beta_{L}{ }^{*}$	$\beta_{\mathrm{B}}{ }^{\text {* }}$	$\beta_{p}{ }^{*}$	$\beta_{K}{ }^{*}=\alpha / r$	μ^{*}	β^{*}	\widehat{b}_{y} *
60	30	0\%	5\%	5\%	10\%	71\%	41\%	0\%	10\%	307\%	962\%	1269\%	600\%	128\%	951\%	30\%
70	40	0\%	5\%	5\%	10\%	100\%	57\%	0\%	10\%	486\%	1347\%	1833\%	600\%	155\%	1134\%	35\%
80	50	0\%	5\%	5\%	10\%	142\%	81\%	0\%	10\%	751\%	1915\%	2666\%	600\%	182\%	1311\%	40\%
60	30	1\%	5\%	4\%	10\%	74\%	26\%	1\%	10\%	257\%	568\%	826\%	600\%	125\%	742\%	23\%
70	40	1\%	5\%	4\%	10\%	96\%	33\%	1\%	10\%	384\%	735\%	1119\%	600\%	150\%	888\%	27\%
80	50	1\%	5\%	4\%	10\%	126\%	44\%	1\%	10\%	556\%	961\%	1516\%	600\%	173\%	1040\%	30\%
60	30	2\%	5\%	3\%	10\%	79\%	18\%	2\%	10\%	218\%	365\%	583\%	600\%	123\%	588\%	18\%
70	40	2\%	5\%	3\%	10\%	94\%	22\%	2\%	10\%	308\%	439\%	747\%	600\%	144\%	696\%	20\%
80	50	2\%	5\%	3\%	10\%	114\%	26\%	2\%	10\%	421\%	530\%	951\%	600\%	164\%	809\%	22\%
60	30	3\%	5\%	2\%	10\%	84\%	13\%	3\%	10\%	186\%	249\%	435\%	600\%	121\%	474\%	14\%
70	40	3\%	5\%	2\%	10\%	94\%	15\%	3\%	10\%	251\%	279\%	530\%	600\%	139\%	549\%	15\%
80	50	3\%	5\%	2\%	10\%	106\%	17\%	3\%	10\%	327\%	314\%	640\%	600\%	155\%	628\%	16\%
60	30	4\%	5\%	1\%	10\%	91\%	10\%	4\%	10\%	161\%	176\%	337\%	600\%	118\%	388\%	11\%
70	40	4\%	5\%	1\%	10\%	96\%	11\%	4\%	10\%	208\%	186\%	394\%	600\%	133\%	439\%	12\%
80	50	4\%	5\%	1\%	10\%	102\%	11\%	4\%	10\%	259\%	196\%	455\%	600\%	146\%	491\%	12\%
60	30	5\%	5\%	0\%	10\%	100\%	8\%	5\%	10\%	140\%	128\%	268\%	600\%	116\%	322\%	9\%
70	40	5\%	5\%	0\%	10\%	100\%	8\%	5\%	10\%	175\%	128\%	303\%	600\%	128\%	356\%	9\%
80	50	5\%	5\%	0\%	10\%	100\%	8\%	5\%	10\%	210\%	128\%	338\%	600\%	138\%	389\%	9\%

Table E8: Illustration of the $b_{y}{ }^{*}, \beta^{*}$ and μ^{*} formulas

(propositions 8-9, wealth-in-the-utility-function model, equations (E11)-(E15)) ($\rho=1$) (closed economy, $r=5 \%, \theta=0 \%, \sigma=\infty, s_{B}$ adjusts so that $\beta^{*}=(1-\alpha) \beta_{L}+\beta_{B}=\alpha / r^{*}$ is fixed to 600%)

A	H	θ	σ	r										
20	30	0\%	10000	5\%										
R	人	1-a	ρ											
60	30\%	70\%	100\%											
D	$\mathrm{I}=\mathrm{D}-\mathrm{H}$	g	r*	r-g	S_{B}	λ	$\mathrm{b}_{\mathrm{y}}{ }^{*}$	g_{c}	SL	$(1-\alpha) \beta_{\mathrm{L}}$ *	$\beta_{B}{ }^{*}$	β^{*}	$\beta_{K}{ }^{*}=\alpha / r$	μ^{*}
60	30	0\%	5\%	5\%	6\%	71\%	19\%	0\%	6\%	189\%	411\%	600\%	600\%	126\%
70	40	0\%	5\%	5\%	5\%	100\%	18\%	0\%	5\%	223\%	378\%	600\%	600\%	150\%
80	50	0\%	5\%	5\%	3\%	142\%	17\%	0\%	3\%	249\%	351\%	600\%	600\%	173\%
60	30	1\%	5\%	4\%	9\%	74\%	22\%	0\%	-5\%	152\%	448\%	600\%	600\%	146\%
70	40	1\%	5\%	4\%	7\%	96\%	22\%	0\%	-9\%	166\%	434\%	600\%	600\%	183\%
80	50	1\%	5\%	4\%	6\%	126\%	22\%	0\%	-12\%	173\%	427\%	600\%	600\%	222\%
60	30	2\%	5\%	3\%	13\%	79\%	25\%	0\%	-18\%	125\%	475\%	600\%	600\%	164\%
70	40	2\%	5\%	3\%	11\%	94\%	25\%	0\%	-25\%	123\%	477\%	600\%	600\%	211\%
80	50	2\%	5\%	3\%	10\%	114\%	26\%	0\%	-32\%	115\%	485\%	600\%	600\%	263\%
60	30	3\%	5\%	2\%	17\%	84\%	27\%	0\%	-32\%	108\%	492\%	600\%	600\%	178\%
70	40	3\%	5\%	2\%	16\%	94\%	28\%	0\%	-44\%	93\%	507\%	600\%	600\%	233\%
80	50	3\%	5\%	2\%	16\%	106\%	29\%	0\%	-55\%	73\%	527\%	600\%	600\%	294\%
60	30	4\%	5\%	1\%	23\%	91\%	28\%	0\%	-47\%	101\%	498\%	600\%	600\%	189\%
70	40	4\%	5\%	1\%	23\%	96\%	30\%	0\%	-66\%	76\%	523\%	600\%	600\%	248\%
80	50	4\%	5\%	1\%	23\%	102\%	32\%	0\%	-83\%	46\%	554\%	600\%	600\%	315\%
60	30	5\%	5\%	0\%	30\%	100\%	29\%	0\%	-63\%	104\%	496\%	600\%	600\%	196\%
70	40	5\%	5\%	0\%	31\%	100\%	31\%	0\%	-89\%	74\%	527\%	600\%	600\%	257\%
80	50	5\%	5\%	0\%	32\%	100\%	32\%	0\%	-116\%	38\%	562\%	600\%	600\%	325\%

Table E9: Illustration of the b_{y}^{*}, β^{*} and μ^{*} formulas

(propositions 8-9, wealth-in-the-utility-function model, equations (E11)-(E15)) ($\rho=1$) (closed economy, $r^{*}=5 \%, \theta=2 \%, \sigma=5, s_{B}$ adjusts so that $\beta^{*}=(1-\alpha) \beta_{L}+\beta_{B}=\alpha / r^{*}$ is fixed to 600%)

A 20	$\begin{gathered} \mathrm{H} \\ 30 \end{gathered}$	$\begin{gathered} \theta \\ 2 \% \end{gathered}$	σ	$\begin{gathered} r \\ 5 \% \end{gathered}$										
R	a	1-a	ρ											
60	30\%	70\%	100\%											
D	$\mathrm{I}=\mathrm{D}-\mathrm{H}$	g	r*	r-g	s_{B}	λ	$\mathrm{b}_{\mathrm{y}}{ }^{*}$	g_{c}	s_{L}	$(1-\alpha) \beta_{L}$ *	$\beta_{\mathrm{B}}{ }^{\text {* }}$	β^{*}	$\beta_{K}{ }^{*}=\alpha / \mathrm{r}$	μ^{*}
60	30	0\%	5\%	5\%	6\%	71\%	17\%	1\%	13\%	224\%	376\%	600\%	600\%	112\%
70	40	0\%	5\%	5\%	4\%	100\%	15\%	1\%	13\%	274\%	327\%	600\%	600\%	127\%
80	50	0\%	5\%	5\%	3\%	142\%	14\%	1\%	12\%	316\%	284\%	600\%	600\%	136\%
60	30	1\%	5\%	4\%	8\%	74\%	20\%	1\%	3\%	183\%	417\%	600\%	600\%	134\%
70	40	1\%	5\%	4\%	7\%	96\%	19\%	1\%	0\%	209\%	391\%	600\%	600\%	162\%
80	50	1\%	5\%	4\%	5\%	126\%	19\%	1\%	-2\%	227\%	373\%	600\%	600\%	190\%
60	30	2\%	5\%	3\%	12\%	79\%	23\%	1\%	-9\%	152\%	448\%	600\%	600\%	152\%
70	40	2\%	5\%	3\%	11\%	94\%	23\%	1\%	-15\%	160\%	440\%	600\%	600\%	192\%
80	50	2\%	5\%	3\%	9\%	114\%	23\%	1\%	-20\%	160\%	440\%	600\%	600\%	235\%
60	30	3\%	5\%	2\%	16\%	84\%	25\%	1\%	-22\%	132\%	468\%	600\%	600\%	168\%
70	40	3\%	5\%	2\%	15\%	94\%	26\%	1\%	-32\%	125\%	475\%	600\%	600\%	216\%
80	50	3\%	5\%	2\%	15\%	106\%	27\%	1\%	-41\%	111\%	489\%	600\%	600\%	270\%
60	30	4\%	5\%	1\%	22\%	91\%	27\%	1\%	-37\%	122\%	478\%	600\%	600\%	179\%
70	40	4\%	5\%	1\%	22\%	96\%	28\%	1\%	-52\%	104\%	497\%	600\%	600\%	233\%
80	50	4\%	5\%	1\%	22\%	102\%	29\%	1\%	-67\%	79\%	521\%	600\%	600\%	295\%
60	30	5\%	5\%	0\%	29\%	100\%	28\%	1\%	-52\%	121\%	479\%	600\%	600\%	188\%
70	40	5\%	5\%	0\%	30\%	100\%	29\%	1\%	-74\%	96\%	504\%	600\%	600\%	245\%
80	50	5\%	5\%	0\%	31\%	100\%	31\%	1\%	-97\%	65\%	535\%	600\%	600\%	308\%

Table E10: Illustration of the $b_{y}{ }^{*}, \beta^{*}$ and μ^{*} formulas

(propositions 8-9, wealth-in-the-utility-function model, equations (E11)-(E15)) ($\rho=1$)
(closed economy, $\theta=2 \%, \sigma=5, s_{B}=10 \%, r^{*}$ adjusts so that $\beta^{*}=(1-\alpha) \beta_{L}+\beta_{B}=\alpha / r^{*}$)

A 20	$\begin{gathered} H \\ 30 \end{gathered}$	$\begin{gathered} \theta \\ 2 \% \end{gathered}$	$\begin{aligned} & \sigma \\ & 5 \end{aligned}$											
R	a	1-a	ρ											
60	30\%	70\%	100\%											
D	$\mathrm{I}=\mathrm{D}-\mathrm{H}$	g	r^{*}	$\mathrm{r}^{*}-\mathrm{g}$	S_{B}	λ	$\mathrm{by}^{*}{ }^{\text {a }}$	g_{c}	S_{L}	$(1-\alpha) \beta_{L}{ }^{*}$	$\beta_{B}{ }^{*}$	β^{*}	$\beta_{K}{ }^{*}=\alpha / r$	μ^{*}
60	30	0\%	4\%	4\%	10\%	75\%	24\%	0\%	15\%	277\%	519\%	796\%	796\%	119\%
70	40	0\%	3\%	3\%	10\%	95\%	25\%	0\%	14\%	367\%	529\%	895\%	895\%	139\%
80	50	0\%	3\%	3\%	10\%	114\%	26\%	0\%	14\%	459\%	538\%	997\%	997\%	157\%
60	30	1\%	5\%	4\%	10\%	76\%	22\%	1\%	3\%	201\%	456\%	656\%	656\%	134\%
70	40	1\%	4\%	3\%	10\%	95\%	23\%	0\%	0\%	251\%	466\%	717\%	717\%	162\%
80	50	1\%	4\%	3\%	10\%	113\%	24\%	0\%	-3\%	298\%	478\%	776\%	776\%	189\%
60	30	2\%	5\%	3\%	10\%	77\%	21\%	1\%	-9\%	133\%	415\%	549\%	549\%	154\%
70	40	2\%	5\%	3\%	10\%	94\%	23\%	1\%	-15\%	154\%	433\%	587\%	587\%	192\%
80	50	2\%	5\%	3\%	10\%	112\%	24\%	1\%	-20\%	169\%	451\%	620\%	620\%	233\%
60	30	3\%	6\%	3\%	10\%	77\%	21\%	1\%	-22\%	75\%	392\%	467\%	467\%	178\%
70	40	3\%	6\%	3\%	10\%	94\%	23\%	1\%	-30\%	73\%	417\%	490\%	490\%	231\%
80	50	3\%	6\%	3\%	10\%	113\%	25\%	1\%	-38\%	67\%	444\%	510\%	510\%	289\%
60	30	4\%	7\%	3\%	10\%	77\%	21\%	1\%	-35\%	23\%	380\%	403\%	403\%	208\%
70	40	4\%	7\%	3\%	10\%	95\%	23\%	1\%	-45\%	5\%	413\%	418\%	418\%	278\%
80	50	4\%	7\%	3\%	10\%	114\%	26\%	1\%	-55\%	-14\%	446\%	431\%	431\%	355\%
60	30	5\%	8\%	3\%	10\%	76\%	21\%	1\%	-48\%	-21\%	374\%	353\%	353\%	242\%
70	40	5\%	8\%	3\%	10\%	95\%	24\%	1\%	-60\%	-50\%	414\%	363\%	363\%	331\%
80	50	5\%	8\%	3\%	10\%	115\%	27\%	1\%	-72\%	-78\%	452\%	373\%	373\%	429\%

Table E11: Illustration of the $b_{y}{ }^{*}, \beta^{*}$ and μ^{*} formulas

(propositions 8-9, wealth-in-the-utility-function model, equations (E11)-(E15)) ($\rho=1$) (closed economy, θ and σ adjust so that $g_{c}=g, s_{B}=10 \%, r^{*}$ adjusts so that $\beta^{*}=(1-\alpha) \beta_{L}+\beta_{B}=\alpha / r^{*}$)

Table E12: Illustration of the φ^{M} and φ^{Ks} steady-state formulas (uncapitalized and capitalized inheritance shares in aggregate wealth) (working paper, section 7.3 , equations (7.6)-(7.7), case $b_{y}=\beta / H$)				
$\begin{gathered} \mathrm{H} \\ 30 \end{gathered}$				
g	$\varphi^{\text {M }}$	r-g	φ^{KS}	$\varphi^{\mathrm{KS}} / \varphi^{\mathrm{M}}$
0\%	100\%	0\%	100\%	100\%
1\%	86\%	1\%	117\%	135\%
2\%	75\%	2\%	137\%	182\%
3\%	66\%	3\%	162\%	246\%
4\%	58\%	4\%	193\%	332\%
5\%	52\%	5\%	232\%	448\%
10\%	32\%	10\%	636\%	2009\%
1.7\%	78\%	3.0\%	162\%	207\%
1.0\%	86\%	5.0\%	232\%	269\%

