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Abstract

Most of the attention brought towards the uneven economic e�ects of climate
change has been devoted to inequalities between countries. Nonetheless, it is very
likely that these e�ects will be unequally shared within countries as well. This paper
measures the economic e�ect of weather shocks on the average level of income and
the distribution of income within Metropolitan France. I combine French �scal data
with climate data from weather stations. Allowing for non-linear e�ects of weather
and using historical data, I am able to compute the marginal e�ect of weather shocks
on income. I �nd that an additional day above 30 ° C reduces the yearly income
by 0.1%. This loss is equivalent to 37% of the average daily contribution to yearly
income. I then use RCM to predict potential e�ects of global warming. I found a
reduction of GDP growth of 0.1 percentage point over the medium run and of 0.3
percentage point for the last decades of the century due to additional warm days.
Despite, higher point estimates in magnitude for �rst deciles, I lack statistical power
to conclude that the �rst deciles are signi�cantly more a�ected than the other ones.
One major insight of this paper is nevertheless to conclude that every single decile
is a�ected by the occurrence of extremely hot days.
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La chaleur du climat peut être si excessive que le corps y sera absolument sans

force. Pour lors l'abattement passera à l'esprit même; aucune curiosité, aucune

noble entreprise, aucun sentiment généreux.

Charles de Montesquieu, De l'Esprit des lois, 1748.

1 Introduction

1.1 Motivation

Without falling into Montesquieu's Climate Theory which advances that international di�erences

in economic development and political institutions could be explained solely by temperature

di�erences, the question of an economy's sensitivity to temperatures remains crucial, especially

in a context of global warming.

Having a precise idea of the future costs associated with climate change is more than neces-

sary in order to take rational decisions towards climate change and reduction of gas emissions.

Lively debates have arose on predicted level of emission, predicted costs and discount rates as-

sociated with future damages. However, knowing the precise e�ect on the aggregate level of

income is not enough. This e�ect goes hand in hand with the e�ect on inequalities.

Most of the attention brought towards the uneven economic e�ects of climate change has been

devoted to inequalities between countries. Nonetheless, it is likely that these e�ects will be very

unequally shared within countries as well. These unequal e�ects may be due either to unequal

exposition to climate risks (due to the geography or job) or unequal ability to cope with and

adapt to climate change (due to individual resources, public provisions or job). Understanding

the impacts of climate change notably on inequality levels is of major importance as it pinpoints

the population that should be targeted for speci�c adaptation programs. Moreover, each measure

that aims to tackle climate change has an impact in itself on the distribution of income. Several

mitigation and adaptation measures have indeed often been accused of being anti-poor and/or

regressive.

Another motivation to study di�erentiated within-country climate change e�ects is the exis-

tence of an e�ect of inequality per se on climate change, leading to the so-called "environment-

inequality nexus". Inequalities may reinforce climate change through the richest population's

irresponsible consumption and through a higher demand and a higher need for economic growth

for the rest of the population. Moreover, inequality harms the willingness of the poorest to

accept costly climate change mitigation programs and more generally reduces the ability to
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collectively organize the mitigation of climate change (Laurent, 2015).

This paper studies the average and di�erentiated income response to weather shocks in

France. My approach in this paper is to study historical short-run reactions to marginal weather

shocks to get a benchmark of predicted economic impacts of global warming. I chose here to

focus mainly on one unique aspect of climate change which is global warming. Also, I do not

consider climate change's other speci�c aspects such as sea rise and natural disaster. This for

two main reasons: (1) The pre-existence of temperature deviations, on the contrary to other

aspects, render possible an estimate for global warming e�ects. (2) Climatic projection models

provide clear projections (though with uncertainty) in terms of warming which may not be the

case for other aspects.

1.2 Related Literature

There has been a recent development in literature which aims to assess the link between weather

and income. However, this literature only scarcely covered the question of di�erentiated climate

change impacts. I will �rst present studies focusing on an aggregate impact of weather and

second on more sectoral and individual-centered approaches1.

Methodological advances helped to go beyond the simple correlation that "hot countries tend

to be poor". Dell et al. (2009) estimated that in 2000 one additional degree Celsius was associated

on average with 8.5 % lower income per capita. Not much can nevertheless be inferred from

this relationship measured in cross-section, using therefore only between-country �uctuations.

Indeed, it is more than likely that some omitted variable may induce this correlation to be

spurious. For instance, Acemo§lu et al. (2001) argued that disease risk and mortality rate of

settlers in the colonial time (that is in�uenced by local weather) impacted subsequent economic

development. It therefore turned out to be necessary to use panel estimates to compute unbiased

reaction functions.

Panel estimates based on year-to-year �uctuations and within-country variations exploit

weather deviations from average conditions which are assumed to be exogenous. And this,

to obtain an unbiased response function. Panel studies also �nd a negative impact of hot

temperatures both on the GDP in level and on its growth. Dell et al. (2012) found a large

negative e�ect of higher temperatures on growth but only in poor countries. They estimate that

an increase of temperature by 1°C reduces aggregate annual growth by 1.3 percentage point.

They argue that they �nd an e�ect on growth (and not only on the level of GDP) which could

1Only a small share of this literature will be presented here, with a speci�c focus on temperature
e�ects in developed countries. Dell et al. (2014) wrote a very clear and (more) exhaustive presentation
of the "New Climate-Economy literature".
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Figure 1: Global Relationship between GDP and Temperatures.

Source: Burke et al. (2015)

lead to large cumulative e�ects of global warming.

Burke et al. (2015) all the while using a similar methodology also took into account non-linear

e�ects and thus found an impact of temperatures both on poor and rich countries. These non-

linear e�ects can be understood as the fact that an increase of temperature by one degree from

12°C to 13°C does not have the same e�ect than an increase from 30°C to 31°C. Figure 1 presents

the relationship they estimated between income and temperatures. They found that there is

an inverted-U shape curve between temperature and income with an optimal temperature for

output and productivity at 13°C. Above this threshold, they then observe the non-linear negative

impacts of temperature. According to them, this relationship is global (holds for every country)

and has not been mitigated since 1960. However, because poor countries will be more severely

hit by global warming and some rich countries may gain from the increase in temperatures,

they found that global warming will exacerbate global inequalities. They nevertheless did not

mention any e�ect on within-country inequalities.

One small country of indomitable Gauls still holds out against the impact of temperatures:

France is the only country in the world for which Burke et al. (2015) found no signi�cant impact

(neither positive nor negative) of global warming on the economy. This result may nevertheless

not be precise enough for at least two reasons: (1) Their speci�cation may not be �exible

enough to allow for non-linear e�ects and notably e�ects of particularly high temperatures2. (2)

2Their main speci�cation is to use a quadratic term in temperature as an independent variable.
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Figure 2: Local relationship between county GDP and daily temperatures in the US.

Source: Deryugina and Hsiang (2017)

Aggregating the impact of temperatures may hide some detrimental e�ects for sub-groups of the

population (either depending on the geography, occupation, quality of housing or income level).

No net impact does not mean no impact for everyone.

Several studies also use local instead of national weather deviations to estimate a response

function of income to weather. Dell et al. (2009) use sub-national data for 12 American countries

(including the U.S.) and �nd a signi�cant negative relationship between temperatures and income

(an additional degree Celsius in the yearly mean is associated on average with a decrease by

1.2-1.9% of per-capita income) using both within-country and between-country variations.

Deryugina and Hsiang (2017) went further in the study of non-linear e�ects than Burke

et al. (2015). Because global warming is not only an increase in the average temperature but

also of its variance, using only means may hide some impacts of temperatures in the tails of

the distribution. Deryugina and Hsiang (2017) therefore use as variables for temperatures the

number of days in 3°C temperature bins which is closer to a non-parametric speci�cation. study

the impact of temperature and precipitation on the county income per capita in the United

States. As can be seen on Figure 2, their principal result is that "The log personal income per

capita increases slightly as temperatures rise from cool to moderate, then declines approximately

linearly at temperatures above 15°C".Their study is focused on the United States, using local

temperature deviations at the county scale. The order of magnitude is the same than the one

found by Dell et al. (2009).

These sub-national studies brought to light some within-country di�erentiated impacts as
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well. For instance, Hsiang et al. (2017) underlined the importance of looking at redistributive

impacts of climate change in the United States. From the aggregation of several market and non-

market damages across sectors, they conclude that climate change will foster national inequality

in the U.S. Using the initial geographic distribution of income across the U.S. combined with

predicted climate change impact for every U.S. county, they found that poorer counties (mainly

in the Midwest) will su�er more from climate change than the richer ones, therefore, leading

to an increase in between-county inequality. Despite providing a �rst idea of a di�erentiated

within-country climate change impact, their paper explores only one aspect of the sensitivity of

inequalities to climate change. This aspect is an unequal severity of climate change depending

on the place of living; ie: they compute a unique response function per county but found that

counties are unequally hit by climate change. In other words, they look only at geographical

and not at social inequalities. However, it is more than likely that within a county, people may

have di�erent response functions to climate change, depending either on their job, quality of

housing, education or even simply income. That is why, it seems quite important to consider

inequalities within a geographical area, such as the county, and not only between geographical

regions.

Papers that have found an impact on the aggregate output are supported by studies on

sectoral outputs which help to decompose the aggregate impact. This can be done either by

decomposing the output per sector or by conducting sector-focused studies directly.

There is plenty of evidence of the negative impact of climate shocks, notably temperature

shocks, on agricultural income. This relationship applies both to developing countries (e.g.

Skou�as et al. (2013)) and to developed countries (e.g. Schlenker and Roberts (2009)). One

major insight in terms of methodology brought by the later is the importance of allowing for

non-linear and asymmetric temperature e�ects (ie: increase by one degree from 10 to 11 °C

does not have the same impact than an increase from 30 to 31 °C). To estimate these non-linear

impacts they use the number of days in several temperature bins (number of days between 20

and 23 °C for instance) as explanatory variables for weather. It therefore allows for non-linearity

in the level of temperature3.

There are fewer studies on non-agricultural output, some strong evidence nevertheless exists.

The two aforementioned papers isolated the impact on the agricultural sector from the rest of

the economy. Dell et al. (2009), in their sub-national study, found that the negative e�ect of

temperatures is not concentrated on agricultural output but a�ects other economic sectors as

well such as the industrial output. Deryugina and Hsiang (2017) isolate the e�ect of climate

3As it will be underlined later, it however does not allow for non-linearity in the number of days in
one speci�c temperature bin
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variations on agricultural income separately from non-agricultural income and found that both

were impacted by warmer temperatures, though their estimates for non-farm income are less

precise.

More precisely, Hsiang (2010) �nds that unusual warm periods have large negative e�ects

for three out of six non-agricultural sectors in Caribbean countries. Moreover, he �nds that the

impact on non-agricultural sectors exceeds the impact on the agricultural sector (decrease of

2.4% per additional degree Celsius vs. decrease of 0.1% in production of agricultural sector).

These output losses are driven by heat shocks during the hottest season. Two out of three of

the a�ected sectors are service-oriented and provide the majority of output in these Caribbean

economies, while the other a�ected sectors are industrial (mining and utilities).

If for the agricultural output, it seems quite straightforward that hot weather or scarce pre-

cipitation negatively impact farmland productivity, the channels through which weather impacts

non-agricultural income are more subtle.

These channels roughly fall into two groups:

� The impact of temperature on labour productivity or e�ort as observed by Somanathan

et al. (2015) in �rms in India. This comforts previous lab experiment results which found

that one additional degree above 25° C would be associated with a 2% decrease of human

productivity in the US (see e.g. Seppanen et al. (2003)).

� The e�ects of hot temperatures on the labour supply, notably a reduction of time allocated

to work (see e.g. Gra� Zivin and Neidell (2014)). Higher temperatures may reduce time

allocated to work because of reduced labour productivity or changing marginal utility of

non-work activities4.

Other studies also found e�ects on non-market outcomes such as health and mortality (see

e.g. Deschenes (2014)), energy consumption (see e.g. Deschenes and Greenstone (2011)), crime

rate and political con�ict (see e.g. Hsiang et al. (2013)). These non-market e�ects that do not

a�ect income directly are, however, likely to be indirectly linked to the average level of income

and its distribution. For instance, temperature e�ects on health may have additional impact on

labour supply and productivity.

A fourth channel between weather and income which may play a non-negligible role, which is

harder to estimate precisely, are general equilibrium e�ects (e.g. extremely hot weather leading

to a shift in aggregate demand). These e�ects may be particularly crucial when looking at a

distributional impact. These e�ects seem di�cult to seize when only using sectoral approaches.

4Note that temperatures that matter may not only those of the working environment but also nightly
temperatures.
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Evidence of e�ects on speci�c sectors or on individuals to temperatures is di�cult to translate

into a single aggregate e�ect. Doing so supposes one knows exactly which sector is a�ected and

which is not. What is more, it leads to questions on how di�erent sectors interact with each

other and on potential general equilibrium e�ects. Using macro studies does not require speci�c

assumptions on how sectors interact with each other or how they aggregate. Such studies rather

use reduced-form estimators of climate e�ects which cannot be restricted ex-ante to any speci�c

channel.

Based on all this aforementioned literature, several methodological challenges arise as crucial

for an unbiased estimation of weather impact on income. (1) Using panel estimates rather than

cross-section allow to get rid of unobservable characteristics and the risk of an omitted variable

bias. (2) Using a non-parametric speci�cation in temperature and precipitation in order to not

constrain weather impact on income to be linear. (3) There seem to be a trade-o� between

estimating a precise aggregate e�ect (with reduced-form estimators) may come at the price of

hiding a detrimental e�ect for certain sub-population or sectors.

In addition, among all these di�erent branches of the literature, very little attention has

been brought towards uneven within-country weather e�ects. However, in the light of the four

channels aforementioned, the whole population is probably not exposed in the same extent to

weather shocks.

My approach is therefore to study the impact of random, local and marginal year-to-year

variations of weather on income per capita, allowing for non-linear e�ects. This strategy, de�ned

above as close to a reduced-form approach, is related to the work of Deryugina and Hsiang (2017)

mentioned above.

Nevertheless, one can fear that this speci�cation using local variations can lead to spuri-

ous correlations. For instance, income may increase more in Montpellier than in Charleville-

Mézières during the chosen period all the while temperatures rising in Montpellier more than in

Charleville-Mézières without a causal relationship between these two trends. To guard against

this risk, I de-trend income evolution by �rst using a unique trend over the period and by

secondly using seven-year moving averages to keep only income deviations.

Finally, this data allows me to further explore the analysis by studying a di�erentiated

e�ect by deciles of income. This approach towards uneven within-country e�ects in a developed

country has scarcely been explored by the literature to the best of my knowledge5.

5Note that my approach presents the reverse drawback compared to Hsiang et al. (2017): I am not
able to estimate between-county inequality (unequal shocks) but only an unequal response function to a
common shock.
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Combining French local �scal data to get the average income for each French municipality

from 1990 to 2015 and indicators on the distribution of income since 2000 at the canton level

(approx. 10 communes) with the weather interpolation model SIM provided by Météo France, I

am able to use local random deviations of income to estimate marginal responses to change in

the current weather. These estimates are then used as inputs with climate simulation models to

get projections of climate change impacts.

I �nd that the response function of income with respect to temperature is quite �at but

declines severely for days above 30°C. An additional day above 30° C is associated on average

with a decrease of the yearly income by 0.1%. It is equivalent to 37% of the average daily

contribution to yearly income. Note that the average temperature corresponds to an average

over nightly and daily temperatures. The maximum daily temperature of a day with average

temperature at 30°C therefore often exceeds 35°C.

Surprisingly, the results seem to not be concentrated on agricultural income. The point

estimation for �rst deciles indicates a most severe e�ect. However, I lack statistical power to

conclude to a signi�cantly more detrimental e�ect on low deciles compared to the rest of the

population. One major insight of this paper is nevertheless to prove that every single decile of

income is a�ected by the occurrence of extremely hot days.

These results bring more precision to the estimation of the impact of global warming in

France and emphasizes the importance of non-linear e�ects and various sub-populations. The

results are in line both with the literature and with a report of the French Senate (Sénat, 2004)

which estimated the detrimental impact of the 2003 heat wave on French added value to be

between 0.1 and 0.2 percent of GDP (1,5 to 3 billion Euros)6. The population-weighted national

average number of days above 30°C in 2003 was indeed 2.04 days which would, according to my

estimate, have a negative impact of 0.2% of GDP.

I �nally test the robustness of the results through Randomized Inference. Indeed, studies

that use weather (and its randomness) either as an instrument variable or an explanatory one

have been recently criticized for the spurious correlation it may contain (see e.g. Cooperman

(2017) or Lind (2015)). This, notably, as a consequence of the spatial auto-correlation of the

data: weather and income of two neighbour communes cannot be seen as independent from each

other. Randomized Inference (also called Permutation Tests) allows me to assess the extent of

this issue in my setting.

6Note that in the report, it is mentioned that the 2003 heat wave had an impact 0,1 to 0,2 percent
of GDP in relative terms and 15 to 30 billion Euros in absolute terms (which is in fact 1 to 2 percent
of GDP). I interpret this incoherence between the two �gures as a typo and use the smaller one as a
benchmark.
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Using the historical estimates on the average level of income, I am able to assess potential

impact of global warming in France using a Regional Climate Model (RCM). Under the RCP

8.5 scenario of the IPCC, French GDP would be reduced by 0.1% every year in the medium

term (2050-2080) and almost 0.3% every year in the long-term (2080-2100).

The remaining of this paper is organized as follows: Section 2 describes the data used and

provides descriptive statistics, Section 3 presents my estimation strategy, Section 4 presents my

main results, Section 5 tests the robustness of the results, Section 6 uses these results to assess

global warming potential impacts for the French economy and Section 7 concludes and discusses

the results.
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2 Data and Descriptive Statistics

This paper uses two main categories of data: climate data and income and socio-demographic

data. The description of the climate simulation models will be described in the projection section

(6).

2.1 Climate Data

I am using a dataset provided by Météo France named Safran-Isba-Moscou (SIM) computed by

the Centre National de Recherches Météorologiques (CNRM) and the Centre de géosciences de

Mines ParisTech. It gives 9 000 points of gridded data for Metropolitan France obtained from

an interpolation of the 554 weather stations and corrected by weather models. I then interpolate

this data to obtain the weather of each commune as a weighted-average of the four neighbouring

points.

Mean daily temperatures over the period are going from -25 ° C to + 35 ° C. The partic-

ularly cold temperatures are not representative of temperatures of any commune because they

correspond to points in very high uninhabited mountains. This is nevertheless not the case of

particularly warm temperatures which occurred in inhabited areas. The highest mean daily tem-

perature has been observed on the 13th of August 2003 in Perpignan (near the Spanish border).

Figure 4 taken from Météo France illustrates the evolution of the temperatures in France since

the beginning of the twentieth century. A striking increase of temperature of about 1° C since

1990 (which is the �rst year of my study) can be seen on Figure 4.

This increase in average French temperatures can also be observed in the data used for this

study by comparing average temperatures of 2010-2015 vs. those of 1990-1995 on Figure 4 for

each French Metropolitan commune.

Figure 5 displays the average number of days in each temperature bin. Extreme weather

and notably extremely warm days are quite rare (on average 1 day above 30° every 10 years).

However, out of the total of observations (950 000), 22 000 indicate at least a day above 30°C

in the sample.

All communes have experienced days with a daily mean temperatures above 26° C. For days

above 30° C which will be my main variable of interest, only half of the communes are concerned.

As can be seen of Figure 6 these communes are not localized speci�cally in the South. Also,

they do not show signi�cant di�erences in income, size or composition of labour force compared

to communes which did not experienced any days above 30°C. 10 départements (over 100) do

not have any communes which experienced a day above 30° C: Haute-Alpes (05), Ardennes (08),
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Figure 3: Evolution of the temperature between 1900 and 2015

Source: Météo France
Lecture: In 2003, the yearly average of temperature was 1.6 °C above the long-term average whereas the
moving average for 1998-2008 was 1°C above the long-term average.

Haute-Loire (43), Nord(59), Pas-de-Calais (62), Haute-Savoie (74), Seine Maritime (76), Somme

(80), Vosges (88) and Territoire de Belfort (90). Figure 20 in the Appendix shows the di�erences

between these communes. These départements are either in mountainous area or in the very

North of the country. This fact that only half of the communes experienced days above 30°C

may question the external validity of the estimates. This will be discussed in detail in the last

section.

2.2 Income Data

2.2.1 Average Income

I use income data at the municipal level provided by the Direction Générale des Finances

Publiques (DGFiP) that gives the average level of income per �scal household per commune

(approx. 36 000) for each year from 1990 to 20157.

Values before 2002 are converted from Francs to Euros and values for each year are converted

7Note that the de�nition for the income variable varies slightly over time. It corresponds to the
revenu net moyen des foyers �scaux for the period 1990-1993, revenu imposable net des foyers �scaux

for 1994-2009 and revenu �scal de référence for 2010-2015.
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Figure 4: Evolution of the temperature between 1990-1995 and 2010-2015.

Data from Météo France

Figure 5: Average yearly number of days in each temperature bin (1990-2015).

Data from Météo France

into Euro of 2015. To get rid of national institutional changes8 that occurred twice, data is

8For instance, in 2006, the tax relief of 20% on wages was suppressed.
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Figure 6: Average yearly number of days above 30 by commune (1990-2015).

Data from Météo France

normalized to evolve yearly in the same way as income provided by the World Inequality Lab9.

This normalization has no impact on the estimation because of the use of year �xed-e�ects.

The local �scal data is slightly noisy, notably for small communes. This noise may be due to

either measurement errors or for instance a rich �scal household moving in or out of the commune.

Both of these reasons will add noise to my estimates. Measurement errors can lead to under-

estimating the true coe�cients. I therefore decided to exclude observations that have a gap of

(log) income from the 7-year moving-average above the median and three standard-deviations or

below the median and three-standard deviations. This excludes only 13 000 observations (1.3%

of the sample). The communes with these outliers are on average smaller (average population

of 205 vs. 1 524 for the whole sample), have thus a higher proportion of farmers (9% vs. 2.5

% for the whole sample) and are a bit poorer (19 513 Euros of average income vs. 22 274 for

the whole sample). See Table 5 in the Appendix for more details. Nevertheless, running the

main regressions without excluding outliers, gives the same estimates for the main parameters

of interest and therefore do not alter the main insights of these papers, though makes it more

noisy.

9
www.wid.world
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22 000 observations have missing values in average income (2.3%) and/or have zero reported

�scal households. This issue concerns only 3 000 communes (ie: the other 33 000 have informa-

tion for all years). These missing values are mainly due to institutional changes, for instance

two communes that merge together and therefore change identi�ers or a commune that is split

in two. The remaining observations for the communes are therefore consecutive. For instance,

a lot of communes do not have information for the period 1990-1999 but have it for 2000-2015.

Even, if institutional change or non-reporting may be considered to some extent as endogenous,

it seems quite unlikely to be correlated with the weather. Moreover, for years with full informa-

tion, these communes do not have a signi�cantly di�erent average income than the rest and are

spread all across French territory. I thus consider these missing values as random and do not

take it into account in my speci�cation. The panel dataset is therefore unbalanced.

Figure 7 describes the evolution of the weighted-average income by communes during the

period 1990-2015. The average income growth rate over the period is 0.73% per year, ie: the

Figure 7: Evolution of the average income by communes (1990-2015)

Note: All �gures are expressed in constant Euro of 2015. Figures correspond to the population-weighted
per-commune average income per �scal household

real average per household income of 2015 is around 20% higher than in 1990.

This evolution can be decomposed by département (see Figure 8). There is a divergent tra-

jectory across French territories. For instance, Haute-Savoie had a growth rate of average income

over the period of 1.06% each year compared to Seine-Saint Denis which exhibited a decrease in
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average income of 0.75% each year. In 2015, its average income was 17% lower than in 1990. One

nevertheless has to be careful in the interpretation of these �gures. Indeed, this divergence in

trajectory, does not imply that the same people are a�ected by a real decrease in average income

within a département. This, because the composition of the population of these départements

is very likely to have changed during the last decades. The uneven evolution of income within

Figure 8: Evolution of the average income by département (1990-2015)

Data from the DGFiP

France is a further justi�cation for using not only (log) income but also de-trend (log) income

as dependent variables to avoid capturing spurious correlations with trends in weather and in

income.
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2.2.2 Distribution of Income

For the second part on inequality, I use the same data provided by the DGFiP and distributed

by the French Statistical Institute (INSEE10) but at the canton level (approx. 10 communes).

This data gives the threshold for each decile of income. I choose to work at a larger scale to

approach the question of inequality because a lot of information is hidden in the source �le at

the commune level for statistical con�dentiality reasons.

The data provided at the canton scale is nevertheless only available for a smaller period of

time (2000-2011). I therefore have a lower cross-section and time dimension which reduces the

statistical power of the analysis.

This data gives the deciles (ie: the threshold at which a share s of the population is below

10% for instance). From this data I can get the average income by group and the share of to-

tal income earned by this group using Pareto interpolation as described in Blanchet et al. (2017).

Note that I will not estimate inequality at the national level. Indeed, I use deciles within

cantons as indicators of inequality. And, as can be seen on Figure 8, there are also high inequal-

ities between cantons. If global warming fosters these inequalities, this will not be estimated in

my coe�cients. This may be a particularly critical issue if poorer cantons are more severely hit

by temperature shocks than richer ones.

Figure 9 shows the share owned by the top 10 % by département for year 2011. The national

weighted average for 2011 is of 29.5 %.

2.3 Socio-demographic Data

As covariates I also use data provided by the French Statistics Institute (INSEE) which traces

the evolution of the composition of French communes in terms of unemployment rates, education

levels, etc. Finally, I use data from the Recenssement agricole provided by the French Ministry

of agriculture to obtain the share of people working in agriculture by communes for years 1990,

1997, 2004 and 2010. I then compute for each year of my study (1990-2015) the weighted average

of these values depending on the distance to the date with available information11.

10Data named Revenus Fiscaux localisés des ménages (RFL) and Fichier Localisé Social et Fiscal
(FiLoSoFi).

11For instance: shareagri,1994 = ( 1
4 + 1

3 )−1 × (
shareagri,1990

4 +
shareagri,1997

3 )
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Figure 9: Share of income earned by the top 10% by département (2011)

Data from the DGFiP
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3 Empirical Strategy

My main equation of interest estimates by Ordinary Least Squares (OLS) the (log) average

income per �scal household as a function of the (log) lag income, current and previous weather,

commune and year speci�c observables and �nally commune and year �xed e�ects. This is

summarized by equation (1) below.

Yi,t = ρYi,t−1 +
∑
m

(βmTm
i,t + φmTi,t−1) +

∑
n

(γnPn
i,t + ψnPn

i,t−1) +Xi,t + µi + θt + εi,t (1)

With:

� Yi,t is a measure of average income per �scal household. Depending on the speci�cation,

either:

� (log) income per capita of commune i in year t;

� Gap between (log) income and the (log) income predicted from the a constant trend;

� Gap between (log) income and the (log) 7-year moving-average income.

� Tm
i,t the number of days of year t for which mean daily temperature have been in the interval

m in commune i. These intervals are 3° C intervals : ]−∞;−6°C[, [−6°C;−3°C[,...,[+27°C; +30°C[,

[+30°C; +∞[ (the interval [9; 12] is omitted and considered as reference);

� Pn
i,t the number of days in year t for which mean precipitations have been in interval n of

40mm: [0;40mm[, [40mm; 80mm[, ..., [400mm, +∞[. The interval [0;40mm[ is omitted;

� Xi,t is a set of covariates (unemployment rate, share of people with at least an undergrad-

uate diploma, share of people with less education than the Brevet des collèges (BEPC),

share of people working in agriculture);

� µi communes �xed e�ects;

� θt year �xed e�ects;

� εi,t the error term.

The principal coe�cients of interest are here βm and γn. They may be interpreted as the impact

on the level of income of having one additional day in a given temperature interval compared

to the interval of reference. This equation may be augmented by interaction terms between

temperatures and precipitations12.

12Note that I will not make all bins of temperature interact with all bins of precipitation as it would
add 140 variables to the speci�cation and present risks of multicolinearity. I will rather compute the
number of days inside a temperature bin with substantive rain (ie: with rain higher than 1mm).
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This speci�cation allows for an estimation of the non-linear impacts of temperature and

precipitation on income which are crucial. Indeed, it seems unlikely that a temperature rise

from 12 to 13 °C would have the same impact than from 29 to 30°C. These non-linear impacts

may be confounded using only means and quadratic terms (as has been done by Burke et al.

(2015)). This equation is related to the work of Deryugina and Hsiang (2017).

The �xed-e�ects approach controls for both observable and unobservable characteristics of

each commune that do not vary over time. I therefore compare a commune to itself when it

experienced several types of weather. For instance, I control for the fact that temperature may

be on average higher in Montpellier than in Charleville Mézières and local income higher as well

without any causal relationship between the two. I also use �xed-e�ects for each year which

will estimate all observable and unobservable characteristics that vary over time but are the

same across all communes. In other words, the coe�cients will not be biased by the fact that

some years, such as 2009, may experience highest temperatures than usual as well as economic

recessions at the national level. In brief, the coe�cients estimated are computed on local id-

iosyncratic deviations of each commune compared to the usual conditions. Note that despite

the several methodological advantages of using such speci�cation, it has also some drawbacks.

Because global warming is as its name suggests global, I may miss some e�ects when all com-

munes are experiencing higher temperatures at the same time. This will be discussed in more

details in Section 7.

Following the work of Cameron et al. (2011), I am clustering my standard-errors in two

dimensions (two-way clustering). First, within communes across years to take into account the

serial correlation and allow for heteroskedasticity. Second, within regions by year to take into

account the spatial auto-correlation13.

It is important to mention the several hypotheses that underlie this speci�cation.

� As in all �xed-e�ects speci�cations, in order for β̂m to be a consistent estimator of βm;

the unobservable characteristics of a commune need to not change over time in a way

which is correlated with the weather. This assumption would for instance be violated if

insurance against weather shocks was available in a commune where weather get warmer

rather than in another. However, given that most policies are set at the national level,

such changes would probably not be speci�c to a commune. Furthermore, because there

13I will discuss in more details issues related to spatial auto-correlation in the Section 5 on robustness
checks and notably randomized inference.
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have been no drastic changes in weather during the period it would be quite unlikely to

observe such idiosyncratic changes. Finally, two additional properties of my speci�cation

make me think that this assumption is likely to hold:

� Weather and notably temperature and precipitation can be considered as locally

perfectly exogenous14. Thus, no unobserved characteristics could drive temperature

changes which therefore removes the danger of reverse causality.

� My coe�cient of interest βm may be seen as a reduced-form estimator. In other

words, I do not focus on one speci�c channel through which temperature can a�ect

income. Therefore, having an impact that may transit through unobserved charac-

teristics is not only more than likely but also desirable in this paper.

� The main coe�cient of interest βm is not indexed neither by i nor by t. I thus assume

constant treatment e�ect over communes and over time periods. This will be slightly

relaxed later in the study of heterogenous e�ects.

� Lastly, note that if I allow for non-linearity in temperature level, I do not allow for non-

linearity in the number of days in a temperature bin (ie: one additional day above 30 is

assumed to have the same e�ect whether the commune experiences on average one day

above 30 per year or 3 days).

As can be seen on Figure 8, there are di�erentiated trends in income and in weather inside

France, one could therefore be afraid that these trends will be spuriously associated with the

weather. For example, income may increase more in Montpellier than in Charleville-Mézières

during the chosen period whilst weather became warmer in Montpellier than in Charleville-

Mézières, and this without there being a causal relationship between these two trends. To

tackle this issue, I take two alternative income variables. First, the gap from the (log) predicted

income over the period. It can nevertheless be argued that over the period 1990-2015 communes

may have experienced di�erentiated trends which could as well lead to spurious correlations. I

therefore use the gap from the (log) moving-average income over a seven-year period as a second

alternative income variable.

14This property may nevertheless be challenged in some cases. For instance, Salamanca et al. (2014)
showed that air conditioning in US urban locations, night temperature could increase by more than 1°
C as a consequence of air conditioning thus violating the exogeneity of temperatures. Nonetheless, in
France in 2009 only 3.6% of the housing were equipped with air conditioning (Figure from the Centre
d'Etudes et de Recherches Economiques sur l'Energie (CEREN)) which makes this e�ect not likely to
be really sizable.
A second example of potential endogeneity would be if growth impacts temperatures through urbaniza-
tion (see e.g. Jones et al. (2008)). Nonetheless, because urbanization takes time, this e�ect will rather
be captured by previous income than by temperature.
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The gap from the (log) predicted income ỹi,t can be written as:

ỹi,t = yi,t − ŷi,t

= yi,t − yi,t0 × (1 + gi)
(t−t0)

= yi,t − yi,t0 × (1 +
yi,T − yi,t0

yi,t0
)

t−t0
T−t0

The gap from the (log) moving-average income ỹMA
i,t can be written as:

ỹMA
i,t = yi,t − ŷMA

i,t

= yi,t −
1

7

t+3∑
p=t−3

yi,p

This last alternative income variable can be seen as the most robust and less likely to capture

spurious correlations. It is therefore my preferred speci�cation.

To assess the impact on inequality, the same regression will be run on the average income

for each decile and on the share of total income earned by this decile.
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4 Results

4.1 Impact on the Average Level of Income

Table 6 presents the results of Equation 1. Note that the standard-errors are clustered by com-

munes and region×year (two-way clustering) to take into account both the serial and the spatial

auto-correlation and heteroskedasticity. Figure 10 presents the coe�cients for temperature and

Figure 21 in Appendix for precipitation. There are three di�erent speci�cations. Column (1) re-

gresses (log) Income on the di�erent temperature and precipitation bins (Temperature in [9; 12]

and precipitation in [0; 40] are taken as references). Column (2) regresses the gap of (log) income

from a predicted income with a constant trend over the whole period. This predicted income

corresponds to an income resulting from a constant growth by communes from 1990 to 2015.

Column (3) presents the results of the regression of the gap (log) income from a 7-year moving

average (ie: non-constant trend of growth in the period). All speci�cations include lag weather

and an interaction term between precipitation and temperature . I control for the share of farm-

ers in the commune, the percentage of people with no diploma at all, the percentage of people

with a diploma higher than an undergraduate and the percentage of unemployed. Each obser-

vation is weighted by its population in 1999 to get an average e�ect for the French metropolitan

population15.

Note that all bins have been divided by 365 in order to have an easier interpretation of the

coe�cients. Coe�cients may therefore be interpreted as: an additional day with a temperature

above 30°C reduces the yearly income by 0.1%. Because the average daily contribution to yearly

income is 1
365 = 0.27%, this is equivalent to 37% of the average daily contribution to yearly

income (column 3). The idea behind dividing bins by 365 is not to say that the yearly income

can be decomposed in 365 daily incomes of equal share nor that the e�ect of warm days must

occur only on the current day but rather to have a order of magnitude in mind when looking at

the coe�cients. The interpretation would usually be to compare these results with the reference

interval (ie: one additional day above 30° C has an impact compare to a day in the reference

bin (here: [9°C;12°C]). Nevertheless, because here quasi all coe�cients for bins under 30 are not

signi�cantly di�erent from zero or rather precisely estimated at zero, I can directly interpret my

coe�cients as the impact of one additional day above 30°C compared to a day below 30°C.

As can be seen on Figure 21, in comparison with temperatures, precipitations do not have a

signi�cant e�ect. It seems that there is no clear-cut conclusion for rainfall. This is in line with

15The results can therefore be interpreted as for the average French taxpayer, unweighted results would
rather be interpreted as for the average commune.

27



Figure 10: Marginal e�ect of an additional day in one temperature bin

Note: Results of the equation 1 estimated by OLS with in top-left: (log) income as a dependent variable,
top-right: gap from a constant trend in (log) income, bottom-left: gap from the 7-year moving average
in (log) income. All coe�cients have been multiplied by 365 to be compared with the average daily
contribution to yearly income.
Lecture: One additional day above 30°C is associated on average with a decrease of the yearly income
by 37% of average daily contribution to yearly income (bottom-left).

what has been found by Dell et al. (2014) and Deryugina and Hsiang (2017).

From column (1) to column (3), all coe�cients except the one for days above 30 are reduced

in magnitude but are gaining in statistical signi�cance. It is illustrated on Figure 10 on which

it can be seen that the graph is �attening out until 30. Notably, the positive e�ects observed

for negative temperatures and for days in bin [27; 30[ disappear. I interpret the signi�cance

of these coe�cients in column (1) and (2) as spurious. Indeed, as has been emphasized on

Figure 8 above, some mountainous départments such as the Haute-Savoie have been the dé-

partements with the most increasing income over the period. These are also the only places

where such cold days occur. With a naive estimator such as in column (1) and to a less extent in

column (2) I could capture this trend and interpret it as a spurious causation of the temperature.
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The coe�cient for days above 30 is not only statistically but also economically signi�cant.

Indeed, it means that on a day with average temperature above 30° C, the average income by

commune is reduced by approximately a third of the average daily income contribution compared

to a day with cooler temperatures. Once again, the idea is not to make the hypothesis that all

the e�ects of a day above 30°C occur only on the given day but rather to have an order of

magnitude in mind when looking at the results.

These results di�er slightly from the results of Deryugina and Hsiang (2017) who �nd a

negative e�ect of temperature as temperature grows from 15°C. Here the e�ect appears only for

average temperatures above 30°C. The e�ect for days with temperatures above 30 is in the same

range than their estimates (−0.076%) compared to −0.093% for my corresponding estimate.

These two estimators are nevertheless probably not signi�cantly di�erent from one another.

The chosen estimator is also in line with Schlenker and Roberts (2009) who found a sharp

non-linearity from the same threshold. Their work is nevertheless only focused on agricultural

output16 which will be analyzed in more details in the next part.

4.2 Heterogenous E�ects

4.2.1 Impact on Agriculture

Interaction terms with the labour force composition of the commune can be added to the spec-

i�cation of Equation 1, notably the share of people working in agriculture. It will allow me to

control if the impact is only located in the agricultural sector or if non-farm income is impacted

as well.

The results with the interaction term are displayed in Table 8. Column (1) added an inter-

action term for each temperature bin with the share of farmers. Column (2) is the initial e�ect

without interaction terms, displayed for comparison. The �rst insight is that coe�cients are not

heavily impacted by the inclusion of interaction terms. The main coe�cient of interest (#days

in [30° C;+ ∞[) increases in magnitude by 4 percentage points. The interaction term of days

above 30 with the share of people working in agriculture is signi�cant and positive.

It can be interpreted as: 1 percentage point more farmers in the commune decreases the

magnitude of the impact of an additional day above 30°C on the daily contribution to yearly

income by 3.8 percentage point (0,01% in term of yearly income). This is quite a sizable e�ect.

Nevertheless, the median share of farmers in the communes is relatively low (at 5%) for an

16They found strong non-linear e�ect from 29° C for corn, 30° C for soybeans and 32° C for corn.
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average share across the period around 2.5%. Thus, even for a commune that is at the median

in terms of share of farmers, the coe�cient is still negative and signi�cant (as can be seen on

Table 1 which shows the linear combination of the two coe�cients). The e�ect becomes null for

a commune that has more than 11% of farmers (less than 20% of the communes).

Gap (log) Income from MA Coef. P-value [95% Conf. Interval]
# days above 30× 0.05 × sharefarmers -0.234 0.000 [-0.322;-0.147]

Table 1: Linear combination of the impact of an additional day above 30°C on the average
daily contribution to yearly income for a commune with the median share of farmers

Note: All temperature bins have been divided by 365. To obtain a coe�cient on the yearly income they
should therefore be divided by 365.
Details: Results of the estimation by OLS of Equation 1 with an interaction term of the # days above
30°C with the share of farmers.
Lecture: One additional day above 30°C reduces on average the yearly income by 23% of the average
daily contribution in a commune that has the median share of farmers (5%).

To be more precise, I can also compare the estimated coe�cients between the communes

that have more agricultural workers than the median and those that have less workers than the

median. These results are presented on Figure 11.

It is important to keep in mind that the interacted term is the share of people working in

agriculture in the commune and not the income of those working in agriculture in the communes

by themselves. This only means that communes which have higher share of farmers may be

less sensitive to weather variations. However, these communes may also have other speci�cs

characteristics that protect them from weather shocks.

Despite the fact that at �rst sight these results appear counter-intuitive, it is quite in line

with a report conducted by the French Senate (Sénat, 2004) which estimated the impact of the

2003 heatwave on farmers' income in France. They �nd an ambiguous impact on agriculture,.

Indeed, they underline that heat waves in the late summer lead notably to early and good quality

wine harvest or hardening of wood. Moreover, cereal prices responded to the supply scarcity17

which led to an ambiguous impact on farmer's income. The same report underlines a sizable

detrimental impact on industrial, transport, energy, and distribution sectors.

These results can furthermore be explained both by compensation mechanisms and institu-

tional aspects.

17Wheat prices were higher by 20% in October 2003 compared to October 2002 for a total cereal
production that was 21.5% under the 2002 production. Nectarine prices were higher by 44% compared
to 2002
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Figure 11: Marginal e�ect of an additional day in one temperature bin on gap (log)
income depending on the communes composition.

Note: Results of the estimation by OLS of Equation 1 for communes below the median proportion of
farmers (left) vs. communes above the median proportion of farmers (right). All coe�cients have been
multiplied by 365 to be compared with the average daily contribution to yearly income (0.27%)
Lecture: One additional day above 30°C is associated on average with a decrease of the income per
commune by 40% of the average daily contribution to yearly income in commune with a share of farmers
below the median and has a non-signi�cant impact in commune with a share of farmers above the median.
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Farmers usually subscribe to insurance that compensates them in case of extreme weather,

notably drought. Moreover, in case of drought, the State may also decide to compensate farmers

for their losses18. These compensations either publicly or privately funded are included in the

farmers' earnings and are therefore included in the reported income, which is my dependent

variable.

Several institutional aspects can also justify the fact that farmers' reported income may be

less responsive to weather shocks than their real income. Indeed, farmers have the possibility in

France to declare in year n not only the income of year n−1 (as all other French) but the average

over the three previous years (Moyenne triennale) in order to smooth their taxes. Moreover,

they can also choose to report the income of year n− 2 in year n and not the one of year n− 1

as the rest of the population do. Lastly, farmers are allowed to di�er the inclusion of investment

expenses in their tax reports, again in order to smooth the level of their taxes.

These compensation mechanisms and tax reporting types may explain why those who are a

priori the more sensitive to weather seem to be the ones for whom the income responds less.

Nonetheless, it is important to note that observing a low impact for communes with farmers

does not imply that French farmers' income do not vary with weather. Indeed, deferring the

costs of a climate shock to the following year or smoothing it across three years does not imply

that the farmer does not end up paying these costs.

Secondly, even when the farmer has been compensated by the insurance, this is likely to be

translated into a more expensive insurance policy for following years which can also be considered

as a negative impact on the net actualized income.

Thirdly, taking a more macro approach, compensating farmers for weather shocks still rep-

resents a cost for society that is not estimated here. These costs may however become critical

and unbearable for taxpayers and for private insurances in the context of climate change.

Lastly, it should be kept in mind that the timing of the heat waves may be very crucial as

well, ie: if days above 30°C occur in the early summer or in spring it can have a much more

detrimental impact on land yields than in the late summer (as the 2003 heatwave). Climate

change may lead to earlier hot days which would have an impact that I do not seize here be-

cause I do not make any distinction of when hot days occur. This aspect is true not only for

farmers but may apply to the whole population and thus to my previous estimates. This will

be discussed in more details in section 7.

18For instance, see the Arrêtés interministériels d'indemnisation du 9 septembre 2003
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To conclude, I do not consider the fact that farmers are less impacted by hot days in France

as a main �nding of this paper. And this for the three reasons mentioned above. (1) The variable

of reported income may not be adequate in seizing an impact on the real income of farmers.

(2) Compensation mechanisms may hide more long term detrimental e�ects. (3) With a macro

view, a non-responding farmer's income to hot days does not mean that the costs of agriculture

in France are increasing (need more subventions and compensation mechanisms).

One strong implication of these elements is therefore that the average e�ect computed in

section 4.1 is likely to only very scarcely take into account the impact on agriculture and there-

fore to under-estimate the true average impact.

4.2.2 Impact on the Distribution of Income

From the deciles provided in the data, I can get the average income by decile and the share of

total income earned by this group. This by using Pareto interpolations as described by Blanchet

et al. (2017).

As mentioned above, the data is not at the same scale than the one used in section 4.1 to

compute the average e�ect. I now work at the canton level (approx. 10 communes). Neverthe-

less, running the same regression on the average income by canton gives the same results as the

ones on the average income by commune.

The same regression can be run on the average income by deciles in order to better understand

if all economic agents in the income distribution are impacted in the same proportions.

Figure 12 plots the distribution (without con�dence interval) for each decile19. Two aspects

have to be noted when looking at this distribution: (1) The two �rst deciles seem to be the most

a�ected in terms of log income20. Their reaction functions of the �rst deciles seem to look closer

at what Deryugina and Hsiang (2017) found (ie: progressive negative e�ects of temperatures

higher than 15° C). (2) Even the highest deciles seem to have an income sensitivity to weather

shocks and notably to hot days.

Nevertheless, there is no clear-cut evidence of a di�erentiated e�ect depending on the decile

of income. Indeed, estimates for the �rst decile are very noisy (see Figure 22 in the Appendix

for more details). The �rst decile may be subject to more income variability in general and

more measurement errors (more unemployment, part-time job, etc.). Moreover, the di�erences

between coe�cients are typically not very signi�cant (fail to reject the t-test of unequal coe�-

19The graph with all con�dence intervals is displayed on Figure 22 in the Appendix.
20Note that in absolute terms, the higher deciles remain the most a�ected
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cients). All these elements hinder premature conclusions21.

The only null hypothesis one can reject with strong con�dence is that one speci�c decile

is not a�ected (ie: all deciles have a coe�cient for temperature above 30 that is signi�cantly

negative). In other words, all income groups in France seem to be a�ected by the occurrence of

hot days. Even if it remains unclear if it is in unequal proportions, it is already a strong �nding

that one speci�c decile will not bear all the costs of global warming.

Figure 12: Marginal e�ect of an additional day in one temperature bin by deciles

Note: Results of the estimation by OLS of Equation 1 for each decile separately.
Lecture: An additional day above 30°C is associated on average with a decrease of the yearly income of
the �rst decile (10% poorest of the commune population) by 80% of the average daily contribution to
yearly income. This e�ect is only of -30% of the sixth decile.
The same graph with con�dence interval is displayed in the Appendix (see Figure 22).

I can also study the impact of weather shocks on the share of income earned by each decile in

every canton. These �gures are also obtained thanks to Pareto interpolation from the thresholds

available in the �scal data. Regressing the year-to-year variation of the share of income earned

by each decile does not give any signi�cant results for any decile except for the 9th decile. The

latter has a coe�cient of +0.005 for an additional day above 30°C. This would mean that an

additional day above 30°C increases by 0.5 percentage point the share earned by the 9th decile

21Note that the coe�cients are much more noisy for at least two reasons: (1) less observation for each
year because work at a higher scale (3 500 cantons vs. 36 000 communes) and (2) only 11 years of
observations vs. 26 years in the study on the average level of income
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(from a baseline average of 15%; ie: relative increase of 1
30). Nevertheless, regarding issues of

multi-testing, it is very likely that when I test 10 di�erent coe�cients at least one would reveal

to be falsely signi�cant. After having adjusted by the Bonferroni correction, this coe�cient does

not remain signi�cant.

Despite having no clear-cut conclusions, there are several justi�cations for a more severe

e�ect of warm days for �rst deciles. This, evidently, depends on the channel through which

the e�ect occurs. First deciles may be more a�ected because their jobs are more sensitive to

hot weather (for instance more outdoor activities, more physical activities, less air-conditioned

working environment). Moreover, �rst deciles may have a lower housing quality (notably less

well-insulated home or less access to air conditioning22). Finally, they may also su�er more from

general equilibrium e�ects (less demand for goods produced or sold by �rst deciles for instance).

Note that, as mentioned above, I cannot really estimate di�erentiated e�ects depending on

the place of living (ie: geographical inequalities). Nevertheless, households of �rst deciles may

live (now or in the future) in cantons that are more subject to particularly warm (and therefore

detrimental) temperatures. This inequality will however only be translated in an increase in

national but not local inequality.

22Note nevertheless that only 3.6% of the housing were equipped with air conditioned in France in
2009 (Figure from the Centre d'Etudes et de Recherches Economiques sur l'Energie (CEREN)).
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5 Robustness Checks

5.1 Other Intervals

One potential (and legitimate) criticism to the above �ndings would be that the results are

speci�c to the intervals chosen. I therefore tested if I �nd the same results (or at least the same

insights) when the intervals vary. For the three speci�cations presented above I re-estimated

the results switching the temperature bins by 1° C (ie: instead of using bins [0°C; +3°C[,

[+3°C; +6°C[, etc.; I use [−1°C; +2°C[, [+2°C; +5°C[, etc. and [+1°C; +4°C[, [+4°C; +7°C[,

etc.). The coe�cients obtained are plotted on Figure 13.

Figure 13: E�ects of additional days with various intervals

Note: Results from the estimation by OLS of equation 1 with various temperature intervals: top-
left=initial bins (from −6 to +30); top-right= from −5 to +31 ; bottom-left=from −7 to +29.
Lecture: (top-left): One additional day above 30°C is associated on average with a decrease of the yearly
income by 36% of the average daily income contribution.

Testing for the two other interval distributions gives the same insights, ie: negative e�ect

of an additional day in a temperature bin higher than either 29, 30 or 31° C. This nevertheless
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allows me to precise my estimation. Indeed, I �nd that the negative e�ect begins for days above

29 ° C, this e�ect also seems to increase with temperature. The coe�cient for the impact above

31 ° C is indeed at −0.7% though much more noisy (because there are very few cases of an

average daily temperature above 31°C). Such a high coe�cient would suggest that extremely

hot days do not only impact the income of the given day but also the income of following days.

Indeed, it is di�cult to assume that on average a day above 31°C decreases the income of one

day by 70%. The elements described above, con�rm my hypothesis of strong non-linear e�ects

of temperature on income.

One could also argue that the e�ect is signi�cant because of the choice of the interval of ref-

erence ([9; 12° C ]). This interval has been chosen because the national average temperature lies

in this interval. Moreover, because coe�cients for neighbouring intervals are precisely estimated

at zero (or very close to zero), the coe�cient for days above 30 °C would be signi�cant and of

the same magnitude whatever the reference interval.

5.2 Randomized Inference

One major concern of statistical studies using weather, either as an explanatory variable or as

an instrument, is to take into account the spatial auto-correlation of the data. Indeed, weather,

and to a lesser extent income, are strongly geographically correlated. It means that if one can

exploit the randomness of weather across time, assuming random and independent variation

across space would be a harsh assumption. Unless one takes that structure of the data into

account, one would obtain (downward) biased standard-errors.

This element may also be reinforced by the interpolated characteristics of my weather dataset.

Two-way clustering has been a common tool for controlling for spatial correlation. Nevertheless,

as has been emphasized by Lind (2015) or Cooperman (2017), it may not be enough and may

still lead to spurious correlations. Some solutions exist such as models of spatial dependence or

a correction of the standard-errors by the method proposed by Conley (1999). In both cases it

nevertheless it brings about assumptions on the spatial dimension of the data. This may still

lead to over-rejection of the null hypothesis of no average e�ect. Because weather boundaries do

not correspond to any political boundaries, it may be not restrictive enough to chose to cluster

by region for instance.

I therefore here chose to use Randomized Inference as proposed by Gerber and Green. (2012)

or Cooperman (2017) to test the robustness of the results. The idea of Randomized Inference is

to permute (with replacement) the weather for each year; ie: for each commune (resp. canton)

37



I randomize the "treatment" (ie: the weather) received and run the same regression on this

"placebo" weather variable. For each permuted dataset, I can compute the t-statistic associated

with each coe�cient. The distribution of these t-statistics which is the distribution under the

null hypothesis, should after be compared with the "true" t-stat in order to test its signi�cance.

To be clearer, I create a distribution of t-statistics for which I know that I cannot reject the null

hypothesis of an e�ect and I compare it to my estimated t-statistic. In other words, I break the

structure present in the dataset to try in order to quantify the patterns I could have observed

only "by chance".

The "treatment" can be randomized at several levels. The question is here to know at what

level the true treatment (weather) is assigned. Firstly, if I consider that treatment is assigned to

four "big weather regions" independently, I can randomize across these big regions (see Figure 14

for the delimitation). It means that two communes of di�erent weather regions may be assigned

to the weather of di�erent years but that two communes of the same weather region will be

assigned to the weather of the same year. Secondly, one could consider that no observations

within France could be considered as independent from one another. I therefore also randomize

at the national level; ie: all communes (resp. cantons) of the country are assigned to the weather

of the same year.

Figure 14: Separation of France in 4 big Weather Regions

Once all these test statistics have been computed, I can calculate a p-value by computing

the proportion of the null distribution that is larger than my "true" observed test-statistic. The

new p-values (p∗m) associated with all coe�cients βm for the temperature bin m are therefore:

p∗m =

∑J
j 1(|tjm| ≥ |t∗m||βmj = 0)

J

with t∗m the t-statistic observed for the "true" estimator, J the number of permutations (1 000
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in my present case) and βmj the coe�cient of the interval m computed in permutation j and tjm

its associated test-statistic.

I can therefore test the robustness for each of the coe�cients of Equation 1 estimated in the

previous section by Randomization Inference.

Figures 15 and 17 are presenting the distribution of t-statistics of the coe�cients for the

number of days in [30° C ;+∞ [ assuming either an independence of two communes in di�erent

weather regions (15) or no independence at all (17). I therefore obtain new p-values under the

sharp-null hypothesis of no-e�ect (Table 2). These p-values correspond to the number of "null"

t-statistics that are larger in absolute terms than my "true" t-statistic. In other words, one can

calculate the probability to obtain an estimate of such a magnitude if days above 30° C have no

e�ect at all. Figure 17 gives two insights:

� Looking only at usual p-values would tend to over-reject the null hypothesis of no asso-

ciation between temperature and income. Increasing the number of potential correlations

between observations in the space dimension leads to higher estimated t-statistics in ab-

solute term. In all clustering levels, despite having a distribution of t-statistics centered

at zero, the null hypothesis is rejected in more than 5% of cases. Indeed, more than 5%

of the estimated t-statistics have an absolute value above 1.96 23. This is very likely due

to the spatial correlation that subsists in the dataset despite having used as a depen-

dent variable the gap from a moving-average and having clustered in two dimensions (by

commune (resp. canton) for the serial correlation and by region × year for the spatial

auto-correlation). To be more precise, because observations are not independent in the N

dimension, the central limit theorem cannot be applied.

� The "true" estimator for days above 30°C has a t-statistic (red line) that is far enough

from the distribution of the t-statistics under the null hypothesis (the computed p-value

has a value of 4% in the worst case). That is why, I am able to reject the null hypothesis

of no-association between temperature and income.

Note that the null hypothesis tested in the framework of Randomization Inference is a sharp

null hypothesis. In other words, I test if the correlation between temperature and income is null

for all the treated elements (ie: all years). Rejecting the sharp null hypothesis thus means that

there is at least one year for which the "treatment" had an e�ect on the outcome of interest.

Assuming, as before, a constant treatment e�ect (ie: β not indexed neither by t nor by i) implies

23Because weather of previous years may impact income of given year, these correlations may not be
spurious for every permuted dataset. Nonetheless, the null hypothesis of no-association is here rejected
in 50% of the permutations which is far above common threshold.
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the rejection of the null hypothesis of no average e�ect (ie: coe�cients for di�erent years cannot

cancel out).

Figure 15: Distribution of the coe�cients of the regressions of (log) income on the #
days above 30°C clustered by weather regions.

Computed with 1 000 iterations.
The true "t-stat" (red line) is at -7.46

Figure 16: Distribution of the coe�cients of the regressions of (log) income on the #
days above 30°C for no independence

Computed with 1 000 iterations.
The true "t-stat" (red line) is at -7.46

If one applies the same strategy of Randomization Inference on the coe�cient for days
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Correlation level # days > 30
Initial regression 0.000
Weather Region 0.028
Country 0.040

Table 2: New p-values obtained through RI

between 27°C and 30°C, it gives the distribution of t-statistics presented on Figure 17 without

assuming independence between two communes of the same year (clustering at the national

level). One cannot reject the null hypothesis of no association between temperatures and income

(computed p-value=58%). This con�rms the insights from the previous parts.

Figure 17: Distribution of the coe�cients of the regressions of (log) income on the #
days between 27°C and 30°C for no independence

Computed with 1 000 iterations.
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6 Simulation and climatic projections

The e�ects measured on the aggregate level of income, despite being quite sizable and surprising,

remain marginal because the occurrence of days above 30° C is quite rare (see Figure 6 for

historical speci�c local occurrences of days above 30°C). The impact on the economy is therefore

limited though non-negligible. Nevertheless, the occurrence of days above 30°C is likely to

increase in the following years according to several climatic projection models. It therefore

seems interesting to estimate the potential costs of the occurrence of days above 30°C.

6.1 Needed assumptions

To go from estimates computed using historical weather deviations to future climate impact, I

have to advance (at least) two hypothesis:

1. As said above, the estimated coe�cients have been computed on a speci�c sample (because

not all the communes experienced days above 30°C and not all in the same proportion).

Therefore, using these coe�cients as inputs with climate simulations to estimate potential

future costs of global warming requires strong assumptions. Notably, that the e�ect

computed on a speci�c set of communes is valid for other communes as well. Because

these communes are not speci�cally located in one part of the country but rather almost in

every region (except mountainous northern regions) and because their average income per

capita and their labour force compositions are similar, the assumption seems legitimate.

Nevertheless, it may be likely that communes that did not experience any days above 30°C

will su�er more from this new warm climate than those which have already experienced

it. Thus, it would mean that out estimates for predicted negative impact would under-

estimate the true impact.

2. My coe�cients have been computed using historical short-term, marginal and non-lasting

weather variations. To infer on future costs of global warming, one therefore needs to as-

sume that the response function will be the same, notably that adaptation will not change

this reaction function. In the discussion part (section 7) I will question the relevance of

this hypothesis and the di�erences between global warming and historical shocks to assess

the pertinence of my projections.
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6.2 Projection Model

The various climate scenarios intend to represent various possible future weather situations

based on di�erent greenhouse gas concentrations. The EURO-CORDEX ensemble uses Rep-

resentative Concentration Pathways scenario (RCP) provided by the Intergovernmental Panel

on Climate Change (IPCC). These RCPs determine greenhouse gas concentration scenarios and

deduct temperature rises. From these RCPs, General Circulation Models (GCM) that study the

interactions between components of the Earth system are computed. These models give projec-

tions of weather and are downscaled to get predictions at a local scale. Data is provided by the

Drias. The scenario RCP 8.5 corresponds to a "business as usual", ie: no speci�c change of gas

emissions. It is nevertheless the scenario that seems today the more likely (or even optimistic),

in comparison with scenarios like RCP 4.5 would be unrealistic.

Figure 18 presents the projection of average temperatures until 2100. One can observe an

increase of approximately 4° C compared to the pre-global warming situation (pre-1990).

Figure 18: Evolution of average yearly temperatures according to the RCP8.5 Scenario
in France.

Note: Data from Météo France and the Drias. Historical temperatures for the period 1980-2017 and
forecasts for 2018-2100.

Note that with global warming, French communes will experience temperatures that have
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never before occurred (or very rarely). There is therefore two choices to estimate the impacts

of such extreme days: (1) extrapolate the relationship found for days above 30° C or (2) set

the e�ect of days far above 30° C as the same as days just above 30° C. I choose to use the

second option, which is more conservative. My estimate of the projected e�ect is thus likely to

under-estimate the true e�ect (under the two hypothesis stipulated above) and has to be taken

as a lower bound.

According to the projections until 2100, only 24 communes in France will not experience any

days above 30°C, all in very mountainous areas. Three quarters of the communes will experience

a day above 30°C at least once every �ve years. Three quarter of the population24 will experience

such temperatures every three years. Finally, almost 40% of the population will experience such

temperatures more than once a year. At the end of the period it is even more dramatic with on

average a day above 30 °C every three years out of four for the period 2050-2070 and on average

two days above 30 ° C per year for the period 2080-2100 with some regions experiencing more

than 20 days per year above 30 ° C with a non-negligible share of days above 36 °C25. Figure 19

displays the additional number of days above 30 ° for each French commune for the end of the

century compared to the reference period.

My strategy to estimate the impact is to compute for each French commune, the predicted

number of days above 30°C. I compute the 11-year moving-average for each year in order to not

have years with a huge impact and others with almost no impact at all. This would not have

much sense because the models do not forecast a given year's exact temperatures with precision

but rather gives an idea of the tendency over the long-run. I then multiply the di�erence between

the number of days and the number of days from the average 1970-1989 (considered as pre-global

warming) by the coe�cients estimated by equation (1).

δ̂i,t = β30(T
30
i,t − T̄ 30

i,1970−1989) (2)

with:

� δ̂i,t: the predicted impact in commune i and year t;

� β̂30 the estimated coe�cient of an additional day above 30°C;

� T 30
i,t the number of days above 30°C in commune i and year t ;

24If the distribution of population remains the same than in 2012.
25Let me recall that the maximum observed over the period 1990-2015 has been once 33 ° in Perpignan
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Figure 19: Additional yearly number of days above 30° C in 2080-2100 compared to the
pre-global warming period.

Data from the Drias and Météo France

� T̄ 30
i,1970−1989 the number of days above 30°C in commune i during the reference period.

I then compute the average of all δ̂i,t weighted by the commune population of 2012 to get a

nationally representative estimate.

Note that this impact is in relative terms (ie: decrease the future GDP of period t by x%).

According to the RCP 8.5 scenario, I get a national average estimated impact of −0.08% of

GDP each year over the medium-run (for the period 2050-2080) and −0.3% over the long-run

(for 2080-2100) compared to a no global warming scenario.

These �gures may seem small but have to be seen in parallel with growth predictions. If

growth does not exceed 1 or 1.5 % each year, it represents a reduction of a �fth to a quarter

of growth for the end of the period. Furthermore, there are cumulative e�ects of having a

contracted GDP in t− 1 on the GDP of t.
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Medium-Term Long-Term
(2050-2080) (2080-2100)

Point Estimate -0.08% -0.29%
95 % CI [-0.10; -0.06] [-0.36; -0.21]

Table 3: Estimated future yearly impact of global warming in France

Lecture: Under the RCP 8.5, scenario, GDP will be reduced by 0.08% each year due to additional warm
days in 2050-2080 and by 0.29% in the long run (2080-2100).

6.3 Reliability of the Estimation

There are mainly four types of uncertainty in the above estimation: scenario incertitude, model

incertitude, statistical incertitude and economical incertitude26. The �rst two are more of the

prerogative of climatologists than economists. Statistical uncertainty of the estimates computed

in Section 4 is taken into account through con�dence intervals for the projected impact. Eco-

nomical uncertainty (ie: will the economy continue to respond in the same manner to global

warming than it has done historically) will be assessed in the discussion part.

26The EURO-CORDEX advisory document also states internal climate variability as a source of in-
certitude, ie: incertitude about the initialization of each model component but this may be understood
as a type of model incertitude.
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7 Conclusion and Discussion

This paper has assessed the impact of local temperatures on income in France. Results show

that an additional day with temperatures above 30° C reduces the yearly income per �scal

household by 0.1%. This is equivalent to 37% of the average daily contribution to the yearly

income. Quite surprisingly, this phenomenon has been found to not impact farmers' income.

This, in reality, may be explained by compensation mechanisms and the French tax system

aimed towards farmers' �scal income and should not be kept as an insight of this paper. Despite

di�erent point estimates by deciles with bigger negative impacts of days above 30° C for �rst

deciles, I lack statistical power to precisely conclude that global warming may foster national

income inequalities in France. I can nevertheless infer that all deciles of income are a�ected

by the occurrence of extremely hot days. Using predictions made by Regional Climate Models

(RCM), I obtained an estimate for the costs of global warming. My estimate gives a reduction

of GDP over the medium run on average by 0.1 %, and over the long run by 0.3% each year.

Even these small e�ects on GDP may have large consequences over time, taking into account

cumulative e�ects. These �gures should also to be red in light of growth prospects which may

not exceed 1 or 1.5%. Finally, I assessed the robustness of my estimates using Randomization

Inference to avoid the risk of spurious correlations.

I discuss below several issues related to my predictions in terms of global warming costs. I

also present further interesting axes of research.

The �rst aspect to underline is that the results presented in this paper rely on speci�c climate

models which are uncertain. I have focused on the statistical incertitude rather than on climatic

incertitude because the former is an economist's lever for action. However, cautious attention

should also be given to climatic projections. Control for the robustness of my results using more

diverse models would therefore be interesting.

There are also several challenges that arise when using historical estimates to infer future

global warming costs. This rises question both the internal and external validity of my estimates.

Deryugina and Hsiang (2017) argue that their estimates take into account adaptation (using

the envelope theorem and arguing that counties are at the production possibility frontier).

Reaction functions to weather would therefore be optimal and represent a fair estimator of

climate change future costs (ie: costs of adaptation are already taken into account). I think this

statement can nevertheless be challenged because reaction functions to idiosyncratic, unexpected

and non-permanent weather shocks were computed in this study. These three properties make

my coe�cients very likely to estimate the costs of global warming with a bias. Depending on
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the assumptions made, each of these di�erences between global warming and the idiosyncratic,

unexpected and short term weather shocks may lead to either an over- or an under-estimation

of the true e�ect.

Firstly, as it has been shown in previous sections, the impact of temperatures on farmers'

income is only scarcely taken into account. My estimation is therefore likely to underestimate

the true costs of global warming.

Secondly, my speci�cation imperfectly takes into account common shocks and therefore does

not allow to estimate entirely a national level impact. This, for two reasons: (1) National shocks

will be captured by year-�xed e�ects but it is likely that some national detrimental e�ects exist,

leading my coe�cients to under-estimate the "true" costs of global warming. (2) Complex

interactions between communes, may lead the national impact to di�er from the aggregated

impact. One could argue that these costs would be higher if every commune were to be a�ected

at the same time (less geographical solidarity, less compensation and substitution mechanisms

available).

Thirdly, I have assumed in my estimation a linear relationship27 between income and the

number of days above 30°C. However, this relation is likely to be convex with higher cumulative

e�ects; ie: three consecutive days above 30 °C may have a higher negative impact on income

than three times the impact of one day above 30° C. Not taking into account this cumulative

e�ect would therefore tend to under-estimate the true costs of global warming.

Fourthly, climate change and speci�cally global warming may lead to days with temperatures

above the threshold computed here (ie: temperature above 35 or 36 ° C that have not occurred

during the period studied here). In my speci�cation, I have imputed the same coe�cients

for all days above 30° C but these days are very likely to have stronger detrimental impacts on

income thus leading the historical response function to under-estimate the true impacts of global

warming.

Fifthly, historically, days above have occured only in summer and notably in August. This

is not the more critical period in terms of agriculture and a large part of the French labour force

is not working at that time. If days above 30°C occur in other periods than summer, a stronger

detrimental e�ect can be observed.

Sixthly, the share of "treated" people in the population (ie: those who have experienced

days with a higher temperature than 30° C) is very likely to be enlarged. The people who are

traditionally not used to experience such weather e�ects will be a�ected as well. One may argue

that this will lead them to be more sensitive that the previously treated population thus leading

27Note that the non-linearity property that I estimated is in the e�ect of the temperature level, not in
the number of days in each temperature bin
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again to an under-estimation of the true e�ect.

Table 4 tries to summarize these six "internal" biases of my estimates and their sign. This

list is nevertheless not exhaustive. All these internal biases seem to lead to an under-estimation

of the "true" global warming costs. My estimator should in that sense be considered as a lower

bound of the true global warming e�ect.

Di�erence Sign
1 E�ect on farmers -
2 Common Shocks -
3 Cumulative and Consecutive E�ect -
4 Days far above 30°C -
5 Warm days in other time periods -
6 Untreated communes -

Total -

Table 4: Internal Di�erences between the Estimates and "true" Global Warming Costs.

Finally, a big di�erence between short-run response estimates and climate change future

costs is the adaptation and anticipation. These aspects are not speci�c to my study. If future

weather shocks (notably heat waves) are better anticipated than in the past, economic agents

may prepare themselves better and change their optimal response to such events. Moreover,

because it will be a permanent shock, agents may also develop adaptation strategies to climate

change, for instance more air conditioned living and working environments, technological changes

or factor reallocation (e.g. migration) which would reduces the magnitude of the impact. One

should also keep in mind that these adaptation strategies also have costs. Historical estimates

computed on short-term shocks by not taking adaptation and anticipation into account would

therefore over-estimate the costs of global warming.

The several limits to my work are not insoluble and several enlightening answers could be

brought by future research to complete this study. Notably, it would be interesting to apply the

same strategy to minimum and maximum temperatures rather than only the 24h mean,. This

may reveal other non-linear impacts as well.

Secondly, a question that remains (almost) entirely open at the conclusion of this paper is

to know which of the four channels dominates between (1) Land and capital productivity; (2)

Human productivity; (3) Labour supply response and (4) market and general equilibrium e�ect.

It would therefore be very interesting to further explore the channels through which the e�ect

estimated here plays. This could be done with more precise and speci�c data. For instance on
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housing, land productivity, �rm daily income, local GDP decomposition by sector, amount of

time worked by days and vacations, sick leaves, etc. This would also be very useful to conduct

a qualitative study to understand more precisely the phenomenon estimated in this paper. One

aspect that has not been mentioned yet is to know if it is more an indoor or an outdoor e�ect

(in that case, adaptation may be easier).

Thirdly, in continuation of the question of channels, it would be interesting to know if the

e�ect is limited to the given day or if it is spread over the following days or months.

Lastly, I would like to recall that this paper has focused on one speci�c aspect of climate

change: which is global warming. My reasoning is therefore closed to a partial equilibrium

study taking all other aspects than global warming as constant. Nonetheless, temperature rises

can hardly be disentangled from other climate change aspects such as sea rise, natural disasters

(notably storms) and biodiversity changes that are likely to a�ect income as well. Moreover,

because global warming is occuring abroad as well, it will probably have indirect impact on

the French economy (e.g. climatic migration). In light of the aforementioned elements, these

results do not aim to predict precisely the future impacts of climate change impact but rather

aim to highlight what temperature rises independently of other variables could imply in terms

of income.
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Appendix

Figure 20: Di�erences between communes that experienced days above 30°C and those
that did not

Note: Data from the DGFiP and the INSEE.

Outliers Whole sample
Number of observations 35 134 952 994
Size of the commune 205 1 523
(sd) (568) (6 975)
Average income 19 513 22 274
(sd) (22 757) (7 416)
Share of farmers 0.10 0.02
(sd) (0.17) (0.06)

Table 5: Comparison in and out of sample
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(1) (2) (3)
VARIABLES (log) Income Gap (log) Income Gap in MA (log) Income

Lag 0.647*** 0.433*** -0.0175***
(0.00343) (0.00367) (0.00230)

#days in ]-∞; -6° C[ 0.181*** 0.133*** 0.0116
(0.0248) (0.0219) (0.0165)

#days in [-6° C;-3° C[ -0.0558*** -0.0113 -0.0332***
(0.0158) (0.0136) (0.0102)

#days in [-3° C; 0° C[ 0.0361*** 0.0204** -0.0108
(0.0103) (0.00928) (0.00700)

#days in [0° C;3° C[ -0.00740 -0.0317*** -0.0361***
(0.00815) (0.00731) (0.00546)

#days in [3° C;6° C[ 0.0271*** 0.00662 0.000682
(0.00659) (0.00599) (0.00457)

#days in [6° C;9° C[ 0.0174*** 0.00830 -0.0102**
(0.00609) (0.00559) (0.00421)

#days in [12° C;15° C[ 0.0104 -0.0401*** -0.0268***
(0.00651) (0.00572) (0.00436)

#days in [15° C;18° C[ -0.0234*** -0.0313*** -0.0232***
(0.00681) (0.00625) (0.00470)

#days in [18° C;21° C[ -0.0210** -0.0285*** -0.0211***
(0.00823) (0.00743) (0.00547)

#days in [21° C;24° C[ 0.0170* 0.00745 -0.0252***
(0.00899) (0.00838) (0.00608)

#days in [24° C;27° C[ 0.0151 -0.0161 -0.0184**
(0.0121) (0.0113) (0.00796)

#days in [27° C;30° C[ 0.0985*** 0.130*** 0.0200
(0.0203) (0.0189) (0.0133)

#days in [30° C;+ ∞[ -0.343*** -0.325*** -0.370***
(0.0620) (0.0647) (0.0498)

Observations 1360837885 1356999398 1360837885
R-squared 0.854 0.627 0.247

*** p<0.01, ** p<0.05, * p<0.1

Table 6: Regression of income on intervals of temperatures and precipitations with 2-way
clustering

Note: All temperature bins have been divided by 365. To obtain a coe�cient on the yearly income they
should therefore be divided by 365.
Details: Estimation by OLS of Equation 1. Column (1) uses the (log) income as a dependent variable,
column (2) the gap from a constant trend over the period of the (log) income, column (3) the gap from
the 7-year moving-average of (log) income. Observations are weighted by commune population in 2000.
All columns are clustered both by commune and by Region × Year. All columns include Precipitation,
an interaction term between precipitation and temperature and a lag of the weather. Four controls are
included: the share of farmers, the share of people with a higher diploma than an undergraduate, the
share of people with no diploma and the unemployment rate.
Lecture: One additional day above 30°C is associated on average with a decrease by 37% of the average
daily contribution to yearly income (Column (3)).
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Figure 21: Average impact of an additional day in the precipitation bin on the gap from
(log) moving average

Coe�cients obtained with the estimation of Equation 1 by OLS with the gap from the 7-year Moving
Average (Column (3)) of Table ??

Figure 22: E�ect of additional days in temperature bins for each decile

Results of the estimation by OLS of Equation 1 on each decile separately
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(1) (2)
VARIABLES Gap in MA (log) Income Gap in MA (log) Income

Lag -0.0174*** -0.0175***
(0.00230) (0.00230)

#days in ]-∞; -6° C[ -0.00385 0.0116
(0.0173) (0.0165)

sharefarmers× #days in ]-∞; -6° C[ 0.559***
(0.0866)

#days in [-6° C;-3° C[ -0.0359*** -0.0332***
(0.0109) (0.0102)

sharefarmers× #days in [-6° C;-3° C[ 0.208***
(0.0665)

#days in [-3° C; 0° C[ 0.00184 -0.0108
(0.00754) (0.00700)

sharefarmers× #days in [-3° C; 0° C[ -0.493***
(0.0437)

#days in [0° C;3° C[ -0.0318*** -0.0361***
(0.00580) (0.00546)

sharefarmers× #days in [0° C;3° C[ -0.0584*
(0.0334)

#days in [3° C;6° C[ 0.00110 0.000682
(0.00491) (0.00457)

sharefarmers× #days in [3° C;6° C[ 0.0550*
(0.0292)

#days in [6° C;9° C[ -0.00523 -0.0102**
(0.00462) (0.00421)

sharefarmers× #days in [6° C;9° C[ -0.137***
(0.0330)

#days in [12° C;15° C[ -0.0278*** -0.0268***
(0.00479) (0.00436)

sharefarmers× #days in [12° C;15° C[ 0.0611*
(0.0342)

#days in [15° C;18° C[ -0.0214*** -0.0232***
(0.00505) (0.00470)

sharefarmers× #days in [15° C;18° C[ -0.0362
(0.0304)

#days in [18° C;21° C[ -0.0141** -0.0211***
(0.00577) (0.00547)

sharefarmers× #days in [18° C;21° C[ -0.265***
(0.0327)

Table 7: Comparison of coe�cients with and without interaction terms with the share of
farmers per commune (Part 1)
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#days in [21° C;24° C[ -0.0250*** -0.0252***
(0.00635) (0.00608)

sharefarmers× #days in [21° C;24° C[ -0.0206
(0.0369)

#days in [24° C;27° C[ -0.0156* -0.0184**
(0.00839) (0.00796)

sharefarmers× #days in [24° C;27° C[ -0.226***
(0.0622)

#days in [27° C;30° C[ 0.00422 0.0200
(0.0143) (0.0133)

sharefarmers× #days in [27° C;30° C[ 0.704***
(0.145)

#days in [30° C;+ ∞[ -0.429*** -0.370***
(0.0545) (0.0498)

sharefarmers× #days in [30° C;+ ∞[ 4.583***
(0.525)

Constant 0.00642 0.00995*
(0.00522) (0.00511)

Observations 1360837885 1360837885
R-squared 0.248 0.247
Number of communes 36,096 36,096
Commune FE YES YES
Year FE YES YES
Lag included YES YES
Interaction included YES YES
Cluster Commune & Region× Year

*** p<0.01, ** p<0.05, * p<0.1

Table 8: Comparison of coe�cients with interaction terms with the share of farmers per
commune (Part 2)
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