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Abstract

We study the wealth distribution in Bewley economies with idiosyncratic capital
income risk (entrepreneurial risk). We find, under rather general conditions, a
unique ergodic distribution of wealth which displays fat tails (a Pareto distribution
in the right tail).
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1 Introduction

Bewley economies, as e.g. in Bewley (1977, 1983) and Aiyagari (1994).1 represent one
of the fundamental workhorses of modern macroeconomics, its main tool when moving
away from the study of effi cient economies with a representative agent by allowing e.g.,
for incomplete markets.2 In these economies the evolution of aggregate variables does
not generally constitute a suffi cient representation of equilibrium, which instead requires
the characterization of the dynamics of the distributions across heterogeneous agents.
In Bewley economies each agent faces a stochastic process for labor earnings and

solves an infinite horizon consumption-saving problem with incomplete markets. Typi-
cally, agents are restricted to save by investing in a risk-free bond and are not allowed
to borrow. The postulated process for labor earnings determines the dynamics of the
equilibrium distributions for consumption, savings, and wealth. More recent specifica-
tions of the model allow for aggregate risks and an equilibrium determination of labor
earnings and interest rates.3

Bewley models have been successful in the study of several macroeconomic phenom-
ena of interest. Calibrated versions of this class of models have been used to study
welfare costs of inflation (Imrohoroglu, 1992), asset pricing (Mankiw, 1986 and Huggett,
1993), unemployment benefits (Hansen and Imrohoroglu, 1992), fiscal policy (Aiyagari,
1995 and Heathcote, 2005), labor productivity (Heathcote, Storesletten, and Violante,
2008a, 2008b; Storesletten, Telmer, and Yaron, 2001; and Krueger and Perri, 2008); see
Heathcoate-Storesletten-Violante (2010) for a recent survey of the quantitative implica-
tions of Bewley models.
Stochastic labor endowments can in principle generate some skewness in the distrib-

ution of wealth, especially if the labor endowment process is itself skewed and persistent.
On the other hand, Bewley models have generally found it diffi cult to reproduce the
observed distribution of wealth in many countries; see e.g., Aiyagari (1994) and Huggett
(1993).4 More specifically, they have found it diffi cult to reproduce the high inequality
(as measured, e.g., by Gini coeffi cients) and the fat tails (as e.g., in Pareto distributions)
that empirical distributions of wealth tend to display.5 This is because at high wealth

1The Bewley economy terminology is rather generally adopted and has been introduced by is Sargent-
Ljungqvist (2004).

2The assumption of complete markets is generally rejected in the data; see e.g., Attanasio and Davis
(1996), Fisher and Johnson (2006) and Jappelli and Pistaferri (2006).

3These extensions have been first introduced by Huggett (1993) and Aiyagari (1994). See Ljungqvist
and Sargent (2004), Ch. 17, for a review of results. See also Rios-Rull (1995) and Krusell-Smith (2006,
2008).

4Most empirical studies of labor earnings find some form of stationarity of the earning process;
see Guvenen (2007) and e.g., the discussion of Primiceri and van Rens (2006) by Heathcote (2008).
Persistent income shocks are often postulated to explain the cross-sectional distribution of consumption
but seem hardly enough to produce fat tailed distributions of wealth; see e.g., Storesletten, Telmer,
Yaron (2004).

5Large top wealth shares in the U.S. since the 60’s are documented e.g., by Wolff (1987, 2004). Fat
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levels, the incentives for further precautionary savings tapers off and the tails of wealth
distribution remain thin; see Carroll (1997) and Quadrini (1999) for a discussion of these
issues.6

In the present paper we study the wealth distribution in the context of Bewley
economies extended to allow for idiosyncratic capital income risk. Capital income risk
is naturally interpreted as entrepreneurial risk.7 To this end we provide first an analy-
sis of the standard income fluctuation problem, as e.g., in Chamberlain-Wilson (2000),
extended to account for capital income risk; see Ljungqvist and Sargent (2004), Ch. 16,
as well as Rios-Rull (1995) and Krusell-Smith (2006), for a review of results regarding
the standard income fluctuation problem.8 We restrict ourselves to idiosyncratic labor
earnings and capital income for simplicity. We finally embed the economy into general
equilibrium, through a neoclassical production function along the lines of Aiyagari (1994)
and Angeletos (2007), where capital risk and labor earnings are endogenously determined
at equilibrium.
Complementing our previous papers (Benhabib, Bisin, and Zhu, 2012 and 2013),

which focus on overlapping generation economies,9 we show that Bewley economies with
idiosyncratic capital income risk display under rather general assumptions a stationary
wealth distribution which is fat tailed, more precisely it is a Pareto distribution in the
right tail. We also show that it is capital income risk, rather than labor earnings, that
drives the properties of the right tail of the wealth distribution.10

tails for the distributions of wealth are also well documented, for example by Nirei-Souma (2004) for
the U.S. and Japan from 1960 to 1999, by Clementi-Gallegati (2004) for Italy from 1977 to 2002, and by
Dagsvik-Vatne (1999) for Norway in 1998. Using the richest sample of the U.S., the Forbes 400, during
1988-2003 Klass et al. (2007) find e.g., that the top end of the wealth distribution obeys a Pareto law.

6See also Cagetti and De Nardi (2008) for a survey.
7Capital income risk has been introduced by Angeletos and Calvet (2005) and Angeletos (2007)

and further studied by Panousi (2008) and by ourselves (Benhabib, Bisin, and Zhu, 2011 and 2013).
Quadrini (1999, 2000) and Cagetti and De Nardi (2006) study entrepreneurial risk explicitly. We refer
to these papers and our previous papers, as well as to Benhabib and Bisin (2006) and Benhabib and
Zhu (2008), for more general evidence on the macroeconomic relevance of capital income risk.

8The work by Levhari and Snirvasan (1969), Schectman (1976), Schectman and Escudero (1977),
Chamberlain-Wilson (2000), Huggett (1993), Rabault (2002), Carroll and Kimball (2005) has been
instrumental to provide several incremental pieces to the characterization of the solution of (various
specifications of) the income fluctuation problem.

9Other life-cycle models of the distribution of wealth include Huggett (1996) and Rios-Rull (1995).
10An alternative approach to generate fat tails without stochastic returns or discounting is to introduce

a model with bequests, where the probability of death (and/or retirement) is independent of age. In
these models, the stochastic component is not stochastic returns but the length of life. For models
that embody such features see Wold and Whittle (1957), Castaneda, Gimenez and Rios-Rull (2003) and
Benhabib and Bisin (2006). Relatedly, Krusell and Smith (1998) introduce heterogeneous discount rates
to produce some skewness in the distribution of wealth.
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2 The income fluctuation problemwith idiosyncratic
capital income risk

Consider an infinite horizon agent at time t = 0 choosing a consumption process {ct}∞t=0

and a wealth process {at+1}∞t=0 to maximize his utility, discounted at a rate β < 1 subject
to the accumulation equation for wealth,

at+1 = Rt+1(at − ct) + yt+1,

where {yt}∞t=0 is the earning process and {Rt+1}∞t=0 the rate of return process. Suppose
the agent also faces a no-borrowing constraint at each time t:

ct ≤ at.

In this paper we consider the following specification of this income fluctuation prob-
lem:

The utility function is Constant Relative Risk Aversion (CRRA):

u(ct) =
c1−γ
t

1− γ
with γ ≥ 1.

Rt and yt are stochastic processes, identically and independently distributed (i.i.d.)
over time; furthermore

yt has probability density function f(y) on bounded support [y, ȳ], with y > 0;

Rt has probability density function g(R) on support [R,∞), with R > 0.

We also impose the following assumptions.

Assumption 1 βER1−γ
t < 1.

Assumption 2
(
βER1−γ

t

) 1
γ ERt < 1.

Note that Assumption 2 implies that βERt < 1.

Assumption 3 Pr(βRt > 1) > 0 and any finite moment of Rt exists.

Assumption 4 (ȳ)−γ < βE
[
Rt (yt)

−γ].
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We shall in part relax these assumptions in Section 4.
In summary, the income fluctuation problem with idiosyncratic capital income risk

(IF) that we study in this section is the following:

max
{ct}∞t=0,{at+1}∞t=0

E

∞∑
t=0

βt
c1−γ
t

1− γ (1)

s.t. at+1 = Rt+1(at − ct) + yt+1

ct ≤ at

a0 given.

It is useful to briefly outline at the outset our strategy to show that the Bewley
economy, extended to include idiosyncratic capital income risk, can generate a wealth
distribution with fat tails, that is a distribution that does not have all moments. As in the
Aiyagari (1994) model, the borrowing constraint together with stochastic incomes assures
a lower bound to assets which acts as a reflecting barrier (See Lemma 7 in the Appendix).
Since discounted expected returns, βE(Rt), are less than 1 on average, the economy
contracts, giving rise to a stationary distribution of assets. However, since we cannot
obtain explicit solutions for consumption or savings policies, we have to explicitly show
that under suitable assumptions there are no disjoint invariant sets or cyclic sets in assets,
so that agents do not get trapped in subsets of the support of the asset distribution. In
other words we have to show that the stochastic process for assets is ergodic, and that a
unique stationary distribution exists. We show this in Lemmas 6 and 8 in the Appendix.
We then have to show that, unlike in the basic Aiyagari (1994) model with stochastic
earnings and deterministic returns on wealth, introducing idiosyncratic capital income
risk can generate a fat-tailed asset distribution. Since explicit linear solutions are not
available even under CRRA preferences, we cannot use the results of Kesten (1973) for
linear recursions. Instead we use a generalization of the Kesten results for non-linear
stochastic processes that are asymptotically linear, due to Mirek (2011). We show the
asymptotic linearity of the consumption and savings policies which, under appropriate
assumptions allow us to use the results of Mirek (2011) (see Propositions 3, 4 and 5) and
we characterize the fat tail of the stationary distribution in Theorem 3. Finally, using
a "span of control" approach with idiosyncratic productivity shocks and a competitive
labor market as in Angeletos (2007), we show in Section 5 that our results for a fat tailed
distribution of wealth can be embedded in a general equilibrium setting.
In the remaining of this section we show several technical results about the consump-

tion function c(a) which solves this problem, as a build-up for its characterization in the
next section. All proofs are in the Appendix.

Theorem 1 A consumption function c(a) which satisfies the constraints of the IF prob-
lem (1) and furthermore satifies
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i the Euler equation

u′(c(a)) ≥ βERt+1u
′(c [R(a− c(a)) + y]) with equality if c(a) < a; (2)

and

ii the transversality condition
lim
t→∞

Eβtu′(ct)at = 0. (3)

represents a solution of the IF problem given by 1.

By strict concavity of u(c), there exists a unique c(a) which solves 1, the IF problem.
The study of c(a) requires studying two auxiliary problems. The first is a version

the IF problem 1, where the stochastic process for earnings {yt}∞0 is turned off, that is,
yt = 0, for any t ≥ 0. The second is a finite horizon version of the IF problem 1 . In
both cases we naturally maintain the relevant specification and assumptions imposed on
1, our main IF problem.

2.1 The IF problem with no earnings

The formal problem is:

max
{ct}∞t=0,{at+1}∞t=0

E
∞∑
t=0

βt
c1−γ
t

1− γ (4)

s.t. at+1 = Rt+1(at − ct)
ct ≤ at

a0 given.

This problem can indeed be solved in closed form, following Levhari and Srinivasan
(1969). Note that, for this problem, the borrowing constraint is never binding, because
Inada conditions are satisfied for CRRA utility.

Proposition 1 The unique solution of (4), the IF problem with no earnings, is

cno(a) = φa, for some 0 < φ < 1.
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2.2 The finite IF problem

For any T > 0, let the finite IF problem be:

max
{ct}Tt=0,{at+1}

T−1
t=0

E

T∑
t=0

βt
c1−γ
t

1− γ (5)

s.t. at+1 = Rt+1(at − ct) + yt+1, for 0 ≤ t ≤ T − 1

ct ≤ at, for 0 ≤ t ≤ T

a0 given.

With some notational abuse, let ct denote consumption t periods from the end-period
T , that is, at time T − t.

Proposition 2 The unique solution of (5), the finite IF problem, is a consumption
function ct(a) which is continuous and increasing in a. Furthermore, let st denote the
induced savings function,

st(a) = a− ct(a).

Then st(a) is also continuous and increasing in a.

2.3 The IF problem

We can now derive a relation between ct(a), cno(a) and c(a). This result is a straightfor-
ward extension of Proposition 2.3 and Proposition 2.4 in Rabault (2002).

Lemma 1 limt→∞ c
t(a) exists, it is continuous and satisfies the Euler equation. Fur-

thermore, limt→∞ c
t(a) is higher than the optimal consumption function of the no labor-

income problem,
lim
t→∞

ct(a) ≥ cno(a).

The main result of this section follows:

Theorem 2 The solution of (1), the IF problem, is the consumption function c(a) which
is obtained as limt→∞ c

t(a).

2.4 Characterization of c(a)

Let the induced savings function s(a) be

s(a) = a− c(a).

Proposition 3 The consumption and savings functions c(a) and s(a) are continuous
and increasing in a.
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Carroll and Kimball (2005) show that ct(a) is concave. But Lemma 2 guarantees that
c(a) = limt→∞ c

t(a) and thus c(a) is also a concave function of a.

Proposition 4 The consumption function c(a) is a concave function of a.

The most important result of this section is that the optimal consumption function
c(a), in the limit for a→∞, is linear and has the same slope as the optimal consumption
function of the income fluctuation problem with no earnings, φ.

Proposition 5 The consumption function c(a) satisfies lima→∞
c(a)
a

= φ.

The proof is non-trivial; see the Appendix.

3 The stationary distribution

In this section we study the distribution of wealth in an economy populated by a contin-
uum of measure 1 agents who solve the income fluctuation problem IF, given by 1, when
their earnings and investment risk are uncorrelated, that is, i.i.d. in the cross-section.
The wealth accumulation equation of the IF problem in 1 is

at+1 = Rt+1(at − c(at)) + yt+1. (6)

It is useful to compare it with the IF problem given by 4 that has no earnings, yt = 0.
Using Lemma 1 we have:

at+1 = Rt+1(at − c(at)) + yt+1

≤ Rt+1(at − cno(at)) + yt+1

= Rt+1(1− φ)at + yt+1.

Let
µ = 1− φ =

(
βER1−γ) 1γ .

Thus µ < 1. We have
at+1 ≤ µRt+1at + yt+1.

The main result in this section is the following.

Theorem 3 There exists a unique stationary distribution for at+1 which satisfies the
stochastic wealth accumulation equation 6. Furthermore, the distribution has a fat tail,
i.e., there exist 1 < α <∞ and an ε > 0 arbitrarily small such that

E (M ε)α = 1, M ε = µεRt and µ− µε < ε.

and

lim inf
a→∞

Pr(at+1 > a)

a−α
≥ C,

where C is a positive constant.
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The proof, in the Appendix, requires several steps. First we show that the wealth
accumulation process {at+1}∞t=0 induced by equation 6 above is ψ− irreducible and that
a = y represents a reflecting barrier for the process. To show that there exists a unique
stationary wealth distribution we exploit the results in Meyn and Tweedie (2009) and
show that the process {at+1}∞t=0 is ergodic. Finally, to show that the wealth accumulation
process {at+1}∞t=0 has a fat tail, we use the characterization of c(a) and s(a) in Section
2.4, and in particular the fact that s(a)

a
is increasing in a and s(a)

a
approaches µ as a goes

to infinity; this allows us to apply some results by Mirek (2011) regarding conditions
for asymptotically Pareto stationary distributions for processes induced by non-linear
stochastic difference equations.

4 Extensions

We discuss how to relax the specification of the IF problem 1 along two main relevant
directions.

Earning’s growth. We can allow for exogenous growth g > 1 in earnings yt as in
Aiyagari-McGrattan (1998). To this end, we need to deflate the variables by the growth
rate. In principle the borrowing constraint should be assumed to grow at the economy’s
growth rate in this case. In our context, since we allow for no borrowing, no modification
of the constraint is needed. However, Assumption 3 would have to be modified so that
Pr(βRt

gγ
> 1) > 0.

Bounded returns. We can also allow for an upper bound in the support of Rt. Consider
a distribution of R on a bounded support [R

¯
, R̄] which satisfies all assumptions except

that of unbounded support. Let its density be denoted f. Evaluate c(a)
a
at a = ȳ and

compute R̄
(

1− c(ȳ)
ȳ

)
. If R̄

(
1− c(ȳ)

ȳ

)
> 1,then the economy’s stationary distribution of

wealth has fat tails. But suppose instead that R̄
(

1− c(ȳ)
ȳ

)
< 1. In this case pick an

R̂ > R̄ and such that R̂
(

1− c(ȳ)
ȳ

)
> 1 and perturb f , the distribution of R, as follows:

f(R; ε) = (1 − ε)f(R) for any R ∈ [R
¯
, R̄] and f(R̂; ε) has mass ε. Note that f(., 0) =

f , so that we effectively produced a continuous parametrization of the distribution f .
The parametrization is continuous in the sense that

∫
g(r)f(R; ε)dR is continuous in

ε for any continuous function g. Now this construction guarantees that wealth a can
escape to the expanding region with positive probability ε. Indeed by Berge’s maximum
theorem c(ȳ)

ȳ
is continuous in ε and R̂ can be chosen large enough to compensate any

local variation in c(ȳ)
ȳ
. As a consequence, this construction produces an economy whose

stationary distribution of wealth has fat tails even with a distribution of R which is
bounded above.
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5 General equilibrium

In this section we embed the analysis of the distribution of wealth induced by the IF
problem 1 in general equilibrium. Following Angeletos (2007) we assume that each agent
acts as entrepreneur of his own individual firm. Each firm has a constant returns to scale
production function

F (k, n,A)

where k, n are, respectively, capital and labor, and A is an idiosyncratic productivity
shock. Note that for notational economy we suppress the superscript i that denotes the
i′th firm. The agent can only use his own savings as capital in his own firm. In each
period t+ 1, the agent first observes his firm’s productivity shock At+1 and then decides
how much labor to hire in a competitive labor market, nt+1. Therefore, each firm faces
the same market wage rate wt+1. The agent can decide not to engage in production, in
which case nt+1 = 0 and he can carry over the firm’s capital to next period. The agent’s
earnings in period t + 1 are wt+1et+1, where et+1 is his idiosyncratic (exogenous) labor
supply. The firm’s profits in period t+ 1 are denoted πt+1:

πt+1 = max(max
nt+1
{F (kt+1, nt+1, At+1)− wnt+1}+ (1− δ)kt+1, kt+1)

Furthermore,

kt+1 = at − ct
and

at+1 = πt+1 + wt+1et+1

Definition 5 A stationary general equilibrium consists of policy functions, ct, nt, and
kt+1, a (constant) wage rate w, and a distribution v(at+1), such that the following con-
ditions hold:
(i) ct, nt, and kt+1 are optimal policy functions given w.
(ii)

∫
ntdi =

∫
etdi = 1.

(iii) v is a stationary distribution of at+1.

We can now construct such a stationary distribution. The first order conditions of
each agent firm’s labor choice requires

F2(kt+1, nt+1, At+1) = wt+1.

which, under constant returns to scale, implies

F2

(
1,
nt+1

kt+1

, At+1

)
= w. (7)
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From constant returns to scale, we then obtain

πt+1 = Rt+1kt+1.
11

The dynamic equation for wealth is then

at+1 = Rt+1(at − ct) + wt+1et+1.

From equation (7) we can solve

nt+1

kt+1

= g (wt+1, At+1) .

Thus
nt+1 = g (wt+1, At+1) kt+1.

and hence obtain the labor market clearing condition:

1 =

∫
nt+1di =

∫
g (wt+1, At+1)

∫
kt+1di =

∫
g (wt+1, At+1)Kt+1, (8)

where ∫
kt+1di = Kt+1.

Given the wealth at, the agent chooses its consumption ct and savings kt+1. Given
the wage rate wt+1, kt+1, and its realization of At+1, the firm chooses employment nt+1.
Then each agent receives its own firm’s profits and labor earnings wt+1et+1, which forms
at+1. The stochastic process {at+1}∞t=0 permits a unique stationary distribution as in our
analysis of the wealth distribution induced by the IF problem given by 1. The stationary
distribution of at+1 induces then a stationary distribution of kt+1. The aggregate capital
Kt+1 is the first moment of the stationary distribution of kt+1 and is then constant. As a
consequence, from equation (8) , the wage clearing the labor market, wt+1, can be solved
as a constant wage w.

6 Simulations

Being carried out, to be completed.

7 Conclusions

In this paper we construct a general equilibrium model with idiosyncratic capital income
risks in a Bewley economy and show that the resulting wealth distribution can have fat
tails.

11More specifically, Rt+1 = max(ωt+1, 1) and ωt+1 =
[
F1

(
1, nt+1kt+1

, At+1

)
+ 1− δ

]
.

11



References

[1] Aiyagari, S.R. (1994): "Uninsured idiosyncratic risk and aggregate saving," Quar-
terly Journal of Economics, 109(3), 659-84.

[2] Aiyagari, S.R. (1995): "Optimal capital income taxation with incomplete markets
and borrowing constraints," Journal of Political Economy, 103(6), 1158-75.

[3] Angeletos, G. (2007): "Uninsured Idiosyncratic Investment Risk and Aggregate
Saving," Review of Economic Dynamics, 10, 1-30.

[4] Angeletos, G. and L.E. Calvet (2005): "Incomplete-Market Dynamics in a Neoclas-
sical Production Economy," Journal of Mathematical Economics, 41, 407-438.

[5] Attanasio, O.P. and S.J. Davis(1996): "Relative wage movements and the distribu-
tion of consumption," Journal of Political Economy, 104(6), 1227-62.

[6] Benhabib, J. and A. Bisin (2006): "The Distribution of Wealth and Redistributive
Policies," mimeo, New York University.

[7] Benhabib, J. and S. Zhu (2008): "Age, Luck and Inheritance, NBER W.P. 14128.

[8] Benhabib, J., A. Bisin, and S. Zhu (2011): "The Distribution of Wealth and Fiscal
Policy in Economies with Finitely Lived Agents," Econometrica, 79(1), 122-57.

[9] Benhabib, J., A. Bisin, and S. Zhu (2013): "The distribution of wealth in the
Blanchard-Yaari model," forthcoming inMacroeconomic Dynamics, special issue on
Complexity in Economic Systems.

[10] Bewley, T. (1977): "The permanent income hypothesis: A theoretical formulation,"
Journal of Economic Theory, 16(2), 252-92.

[11] Bewley, T. (1983): "A diffi culty with the optimum quantity of money," Economet-
rica, 51(5), 1485-504.

[12] Cagetti, M. and M. De Nardi (2006): "Entrepreneurship, frictions, and wealth,"
Journal of Political Economy, 114(5), 835-70.

[13] Cagetti, M. andM. De Nardi (2008): "Wealth inequality: Data and models,"Macro-
economic Dynamics, 12(52), 285-313.

[14] Carroll, C. D. (1997): "Buffer-Stock Saving and the Life Cycle/Permanent Income
Hypothesis," Quarterly Journal of Economics, 112, 1-56.

[15] Carroll, C. D. and M.S. Kimball (2005): "Liquidity constraints and precautionary
saving," mimeo, Johns Hopkins University.

12



[16] Castaneda, A., J. Diaz-Gimenez, and J.V. Rios-Rull (2003): "Accounting for the
US earnings and wealth inequality," Journal of Political Economy, 111(4), 818-57.

[17] Chamberlain G. and C.A. Wilson (2000): "Optimal intertemporal consumption
under uncertainty," Review of Economic Dynamics, 3(3), 365-95.

[18] Clementi, F. and M. Gallegati (2005): "Power Law Tails in the Italian Personal
Income Distribution," Physica A: Statistical Mechanics and Theoretical Physics,
350, 427-438.

[19] Dagsvik, J.K., and B.H. Vatne (1999): "Is the Distribution of Income Compatible
With a Stable Distribution?" Discussion Paper 246, Research Department, Statistics
Norway.

[20] Fisher, J. and D. Johnson (2006): "Consumption mobility in the United States:
Evidence from two panel data sets," B.E. Journal of Economic Analysis and Policy,
6(1), art. 16.

[21] Guvenen, F. (2007): "Learning your earning: Are labor income shocks really very
persistent?" American Economic Review 97(3), 687-712.

[22] Hansen, G.D. and A. Imrohoroglu (1992): "The role of unemployment insurance
in an economy with liquidity constraints and moral hazard," Journal of Political
Economy, 100(1), 118-42.

[23] Heathcote, J. (2005): "Fiscal policy with heterogeneous agents and incomplete mar-
kets," Review of Economic Studies, 72(1), 161-88.

[24] Heathcote, J. (2008): "Discussion of Heterogeneous Life-Cycle Profiles, Income Risk,
and Consumption Inequality, by G. Primiceri and T. van Rens," mimeo, Federal
Bank of Minneapolis.

[25] Heathcote, J., K. Storesletten, and G.L. Violante (2005): "Two views of inequality
over the life cycle," Journal of the European Economic Association. 32(3), 765-75.

[26] Heathcote, J., K. Storesletten, and G.L. Violante (2007): "Consumption and la-
bor supply with partial insurance: An analytical framework," mimeo, New York
University.

[27] Heathcote, J., K. Storesletten, and G.L. Violante (2008a): "Insurance and oppor-
tunities: a welfare analysis of labor market risk," Journal of Monetary Economics,
55(3), 501-25.

[28] Heathcote, J., K. Storesletten, and G.L. Violante (2008b): "The macroeconomic
implications of rising wage inequality in the United States," mimeo, New York
University.

13



[29] Huggett, M. (1993): "The risk-free rate in heterogeneous-agent incomplete-
insurance economies," Journal of Economic Dynamics and Control, 175(6), 953-69.

[30] Huggett, M. (1996): "Wealth distribution in life-cycle economies," Journal of Mon-
etary Economics, 38(3), 469-94.

[31] Imrohoroglu, A. (1992): "The welfare cost of inflation under imperfect insurance,"
Journal of Economic Dynamics and Control, 16(1), 79-91.

[32] Krueger, D. and F. Perri (2003): "On the welfare consequences of the increase in
inequality in the United States," NBER Macroeconomics Annual 2003, edited by
M. Gertler and K. Rogoff, 83-121, Cambridge, MA: MIT Press.

[33] Jappelli, T. and L. Pistaferri (2006): "Intertemporal choice and consumption mo-
bility. Journal of the European Economic Association," 4(1), 75-115.

[34] Kesten, H. (1973): "Random Difference Equations and Renewal Theory for Prod-
ucts of Random Matrices," Acta Mathematica, 131, 207-248.

[35] Klass, O.S., O. Biham, M. Levy, O. Malcai, and S. Solomon (2007): "The Forbes
400, the Pareto Power-Law and Effi cient Markets," The European Physical Journal
B - Condensed Matter and Complex Systems, 55, 143-147.

[36] Krusell, P. and A.A. Smith (1998): "Income and wealth heterogeneity in the macro-
economy. Journal of Political Economy," 106(5), 867-96.

[37] Krusell, P. and A.A. Smith (2006): "Quantitative macroeconomic models with het-
erogeneous agents," in Advances in Economics and Econometrics: Theory and Ap-
plications, edited by R. Blundell, W. Newey, and T. Persson, Cambridge: Cambridge
University Press.

[38] Levhari, D. and T. N. Srinivasan (1969): "Optimal savings under uncertainty,"
Review of Economic Studies, 36, 153-163.

[39] Ljungqvist, L. and T.J. Sargent (2004): Recursive Macroeconomic Theory, Cam-
bridge, MA: MIT Press.

[40] Mankiw, N.G. (1986): "The equity premium and the concentration of aggregate
shocks," Journal of Financial Economics, 17(1), 211-19.

[41] Meyn, S.P. and Tweedie, R.L. (2009): Markov chains and stochastic stability, Cam-
bridge University Press.

[42] Mirek, M. (2011): "Heavy tail phenomenon and convergence to stable laws for
iterated Lipschitz maps," Probability Theory and Related Fields, 151, 705-34.

14



[43] Nirei, M. and W. Souma (2004): "Two Factor Model of Income Distribution Dy-
namics," mimeo, Utah State University.

[44] Pistaferri, L. (2003): "Anticipated and unanticipated wage changes, wage risk, and
intertemporal labor supply," Journal of Labor Economics, 21(3), 729-82.

[45] Primiceri, G. and T. van Rens (2013): "Heterogeneous life-cycle profiles," forth-
coming in Journal of Monetary Economics.

[46] Quadrini, V. (1999): "The Importance of Entrepreneurship for Wealth Concentra-
tion and Mobility," Review of Income and Wealth, 45, 1-19.

[47] Quadrini, V. (2000): "Entrepreneurship, saving and social mobility," Review of
Economic Dynamics, 3(1), 1-40.

[48] Rabault, G. (2002): "When do borrowing constraints bind? Some new results on
the income fluctuation problem," Journal of Economic Dynamics and Control, 26,
217-45.

[49] Rios-Rull, J.V. (1995): "Models with heterogeneous agents," In Frontiers of Busi-
ness Cycle Research, edited by T.F. Cooley, Princeton, NJ: Princeton University
Press.

[50] Royden, H. L.(1988): Real Analysis, (third ed.), Upper Saddle River, New Jersey:
Prentice-Hall, Inc.

[51] Schechtman, J. (1976): "An income fluctuation problem," Journal of Economic
Theory, 12(2), 218-41.

[52] Schechtman, J. and V.L.S. Escudero (1977): "Some results on an income fluctuation
problem." Journal of Economic Theory, 16(2), 151-66.

[53] Storesletten, K., C.L. Telmer, and A. Yaron (2001): "The welfare cost of business
cycles revisited: Finite lives and cyclical variation in idiosyncratic risk," European
Economic Review, 45(7), 1311-39.

[54] Storesletten, K., C.L. Telmer, and A. Yaron (2004): "Consumption and risk sharing
over the life cycle," Journal of Monetary Economics, 51(3), 609-33.

[55] Wold, H.O.A. and P. Whittle (1957): "A Model Explaining the Pareto Distribution
of Wealth," Econometrica, 25, 591-595.

[56] Wolff, E. (1987): "Estimates of Household Wealth Inequality in the U.S., 1962-
1983," Review of Income and Wealth, 33, 231-256.

15



[57] Wolff, E. (2004): "Changes in Household Wealth in the 1980s and 1990s in the
U.S.," mimeo, NYU.

16



Appendix

Proof of Theorem 1. A feasible policy c(a) is said to overtake another feasible policy
ĉ(a) if starting from the same initial wealth a0, the policies c(a) and ĉ(a) yield stochastic
consumption processes (ct) and (ĉt) that satisfy

E

[
T∑
t=0

βt (u(ct)− u(ĉt))

]
> 0 for all T > some T0.

Also, a feasible policy is said to be optimal if it overtakes all other feasible policies.
Proof: For an a0, the stochastic consumption process (ct) is induced by the policy

c(a). Let (ĉt) be an alternative stochastic consumption process, starting from the same
initial wealth a0. By the strict concavity of u(·), we have

E

[
T∑
t=0

βt (u(ct)− u(ĉt))

]
≥ E

[
T∑
t=0

βtu′(ct)(ct − ĉt)
]
.

From the budget constraint we have

at+1 = Rt+1(at − ct) + yt+1

and
ât+1 = Rt+1(ât − ĉt) + yt+1.

For a path of (Rt, yt), we have

at+1 − ât+1

Rt+1

= at − ct − (ât − ĉt) (9)

and

ct − ĉt = at − ât −
at+1 − ât+1

Rt+1

.

Therefore we have

T∑
t=0

βtu′(ct)(ct − ĉt) =
T∑
t=0

βtu′(ct)

(
at − ât −

at+1 − ât+1

Rt+1

)
.

Using a0 = â0 and rearranging terms, we have

T∑
t=0

βtu′(ct)(ct− ĉt) = −
T∑
t=0

βt[u′(ct)−βRt+1u
′(ct+1)]

at+1 − ât+1

Rt+1

−βTu′(cT )
aT+1 − âT+1

RT+1

.
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Using equation (9) we have

T∑
t=0

βtu′(ct)(ct − ĉt) = −
T∑
t=0

βt[u′(ct)− βRt+1u
′(ct+1)]{at − ct − (ât − ĉt)}

−βTu′(cT )[aT − cT − (âT − ĉT )]

≥ −
T∑
t=0

βt[u′(ct)− βRt+1u
′(ct+1)]{at − ct − (ât − ĉt)} − βTu′(cT )aT .

Thus we have

E

[
T∑
t=0

βtu′(ct)(ct − ĉt)
]
≥ −E

(
T∑
t=0

βt[u′(ct)− βERt+1u
′(ct+1)]{at − ct − (ât − ĉt)}

)
−EβTu′(cT )aT . (10)

By the Euler equation (2) we have u′(ct) − βERt+1u
′(ct+1) ≥ 0. If ct < at, then

u′(ct) = βERt+1u
′(ct+1). If ct = at, then at − ct − (ât − ĉt) = −(ât − ĉt) ≤ 0. Thus

−E
(

T∑
t=0

βt[u′(ct)− βERt+1u
′(ct+1)]{at − ct − (ât − ĉt)}

)
≥ 0. (11)

Combining equations (10) and (11) we have

E

[
T∑
t=0

βtu′(ct)(ct − ĉt)
]
≥ −EβTu′(cT )aT .

By the transverality condition (3) we know that for large T ,

E

[
T∑
t=0

βt (u(ct)− u(ĉt))

]
≥ 0. �

Proof of Proposition 1. The Euler equation of this problem is

c−γt = βERt+1c
−γ
t+1. (12)

Guess ct = φat. From the Euler equation (12) we have

φ = 1−
(
βER1−γ) 1γ > 0.

It is easy to verify the transversality condition,

lim
t→∞

E
(
βtc−γt at

)
= 0. �
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Let V t(a) be the optimal value function of an agent who has wealth a and has t
periods to the end T . Thus we have

V t(a) = max
c≤a

{
u(c) + βEV t−1 (R(a− c) + y)

}
for t > 1

and
V 1(a) = max

c≤a
u(c).

We have the Euler equation of this problem, for t > 1

u′(ct(a)) ≥ βE[Ru′(ct−1(R(a− ct(a)) + y)] with equality if ct(a) < a.

Proof of Proposition 2. Continuity is a consequence of the Theorem of the maximum
and mathematical induction. The proof that ct(a) and st(a) are increasing can be easily
adapted from the proof of Theorem 1.5 of Schechtman (1976); it makes use of the fact
that ct(a) > 0, a consequence of Inada conditions which hold for CRRA utility functions.
�

Proof of Theorem 2. By Lemma 1 we know that c(a) satisfies the Euler equation.
Now we verify that c(a) satisfies the transversality condition (3).
By theorems 1 and 1 we have

ct ≥ φat.

Note that at ≥y
¯
for t ≥ 1. We have

u′(ct)at ≤ φ−γ
(
y
¯

)1−γ
for t ≥ 1.

Thus
lim
t→∞

Eβtu′(ct)at = 0. �

Proof of Proposition 3. By Lemma 1, c(a) is continuous. Thus s(a) is continuous
since s(a) = a− c(a).
Also, by Lemma 1, limt→∞ s

t(a) = s(a), since limt→∞ c
t(a) = c(a), st(a) = a− ct(a),

and s(a) = a− c(a). The conclusion that c(a) and s(a) are increasing in a follows from
part (ii) of proposition 2. �

Note that Proposition 3 implies that c(a) and s(a) are Lipschitz continuous. For ã,
â > 0, without loss of generality, we assume that ã < â. We have c(ã) ≤ c(â) and
s(ã) ≤ s(â). Also c(ã) + s(ã) = ã and c(â) + s(â) = â. Thus

c(â)− c(ã) + s(â)− s(ã) = â− ã.
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Thus we have
0 ≤ c(â)− c(ã) ≤ â− ã

and
0 ≤ s(â)− s(ã) ≤ â− ã.

Thus
|c(â)− c(ã)| ≤ |â− ã|

and
|s(â)− s(ã)| ≤ |â− ã|.

Proof of Proposition 5. The proof involves several steps, producing a characterization
of c(a)

a
.

Lemma 2 ∃ζ >y
¯
, such that s(a) = 0, ∀a ∈ (0, ζ].

Proof. Suppose that s(a) > 0 for a >y
¯
. Pick a0 >y

¯
. For any finite t ≥ 0, we have at >y

¯and u′(ct) = βERt+1u
′(ct+1). Thus

u′(c0) = βtER1R2 · · ·Rt−1Rtu
′(ct). (13)

By theorems 1 and 1 we have
ct ≥ φat > φy

¯
.

Thus equation (13) implies that

u′(c0) ≤
(
φy
¯

)−γ
(βER)t . (14)

Thus the right hand side of equation (14) approaches 0 as t goes to infinity. A contradic-
tion. Thus s(ζ) = 0 for some ζ >y

¯
. By the monotonicity of s(a), we know that s(a) = 0,

∀a ∈ (0, ζ].
We can now show the following:

Lemma 3 c(a)
a
is decreasing in a.

Proof. By lemma 2 we know that c(y
¯
) =y
¯
. For ∀a >y

¯
, c(a)

a
≤ 1 =

c(y
¯
)

y
¯
. Note that −c(a)

is a convex function of a, since c(a) is a concave function of a. For â > ã >y
¯
, we have12

c(â)− c(y
¯
)

â− y
¯

≤
c(ã)− c(y

¯
)

ã− y
¯

.

12See Lemma 16 on page 113 of Royden (1988).
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This implies that
c(â)ã ≤ c(ã)â− [â− ã− (c(â)− c(ã))] y

¯
. (15)

Since c(a) is Lipschitz continuous, we have

c(â)− c(ã) ≤ â− ã. (16)

Combining inequalities (15) and (16) we have

c(â)ã ≤ c(ã)â,

i.e.
c(â)

â
≤ c(ã)

ã
.

By Theorems 1 and Proposition 1 we know that c(a)
a
≥ φ. Thus we have

lim
a→∞

c(a)

a
exists.

Let

λ = lim
a→∞

c(a)

a
. (17)

Note that λ ≤ 1 since c(a) ≤ a.
The Euler equation of this problem is

c−γt ≥ βERt+1c
−γ
t+1 with equality if ct < at. (18)

Lemma 4 λ ∈ [φ, 1).

Proof. Suppose that λ = 1. Thus

lim inf
at→∞

c(at)

at
= lim

at→∞

c(at)

at
= 1.

From the Euler equation (18) we have

c−γt ≥ βERt+1c
−γ
t+1 ≥ βERt+1a

−γ
t+1

since ct+1 ≤ at+1 and γ ≥ 1.
Thus (

c(at)

at

)−γ
≥ βERt+1

(
Rt+1

(
1− c(at)

at

)
+
yt+1

at

)−γ
.
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By Fatou’s lemma we have

lim inf
at→∞

ERt+1

(
Rt+1

(
1− c(at)

at

)
+
yt+1

at

)−γ
≥ E lim inf

at→∞

[
Rt+1

(
Rt+1

(
1− c(at)

at

)
+
yt+1

at

)−γ]
.

Thus

1 = lim
at→∞

(
c(at)

at

)−γ
≥ β lim

at→∞
ERt+1

(
Rt+1

(
1− c(at)

at

)
+
yt+1

at

)−γ
= β lim inf

at→∞
ERt+1

(
Rt+1

(
1− c(at)

at

)
+
yt+1

at

)−γ
≥ βE lim inf

at→∞

[
Rt+1

(
Rt+1

(
1− c(at)

at

)
+
yt+1

at

)−γ]

= βE lim
at→∞

[
Rt+1

(
Rt+1

(
1− c(at)

at

)
+
yt+1

at

)−γ]
= ∞.

A contradiction.

From Lemma 4 we know that ct < at when at is large enough. Thus the equality of
the Euler equation holds

c−γt = βERt+1c
−γ
t+1.

Thus (
ct
at

)−γ
= βERt+1

(
ct+1

at

)−γ
. (19)

Taking limits on both sides of equation (19) we have

lim
at→∞

(
ct
at

)−γ
= β lim

at→∞
ERt+1

(
ct+1

at

)−γ
.

Thus

λ−γ = β lim
at→∞

ERt+1

(
ct+1

at

)−γ
. (20)

We turn to the computation of limat→∞ERt+1

(
ct+1
at

)−γ
.

In order to compute limat→∞ERt+1

(
ct+1
at

)−γ
, we first show a lemma.
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Lemma 5 For ∀H > 0, ∃J > 0, such that at+1 > H for at > J . Here J does not depend
on realizations of Rt+1 and yt+1.

Proof. Note that

at+1

at
=
Rt+1(at − ct) + yt+1

at
≥ Rt+1

(
1− ct

at

)
.

From equation (17) we know that for some ε > 0, ∃J1 > 0, such that

ct
at
< λ+ ε

for at > J1. Thus
at+1

at
≥ Rt+1

(
1− ct

at

)
≥ Rt+1(1− λ− ε). (21)

And
at+1

at
≥ Rt+1(1− λ− ε) ≥ R

¯
(1− λ− ε).

We pick J > J1 such that R¯
(1− λ− ε) ≥ H

J
. Thus for at > J , we have

at+1

at
≥ H

J
.

This implies that

at+1 ≥
H

J
at > H.

From equation (17) we know that for some η > 0, ∃H > 0, such that

ct+1

at+1

> λ− η (22)

for at+1 > H.
From Lemma 5 and equations (21) and (22) we have

Rt+1

(
ct+1

at

)−γ
= Rt+1

(
ct+1

at+1

at+1

at

)−γ
≤ (λ− η)−γ (1− λ− ε)−γR1−γ

t+1

for at > J . And
(λ− η)−γ (1− λ− ε)−γER1−γ

t+1 <∞

since γ ≥ 1. Thus when at is large enough, (λ− η)−γ (1 − λ − ε)−γR1−γ
t+1 is a dominant

function of Rt+1

(
ct+1
at

)−γ
.
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Note that

lim
at→∞

ct+1

at+1

= lim
at→∞

c(at+1)

at+1

= λ a.s.

by Lemma 5 and equation (17). And

lim
at→∞

at+1

at
= lim

at→∞

(
Rt+1(at − ct) + yt+1

at

)
= Rt+1(1− λ) a.s.

since yt+1 ∈ [y
¯
, ȳ]. Thus

lim
at→∞

ct+1

at
= lim

at→∞

ct+1

at+1

at+1

at
= λ(1− λ)Rt+1 a.s.

Thus by the Dominated convergence theorem, we have

lim
at→∞

ERt+1

(
ct+1

at

)−γ
= ERt+1

(
lim
at→∞

ct+1

at

)−γ
= λ−γ(1− λ)−γER1−γ

t+1 . (23)

Combining equations (20) and (23) we have

λ−γ = βλ−γ(1− λ)−γER1−γ
t+1 . (24)

By Lemma 4 we know that λ ≥ φ > 0. Thus we find λ from equation (24)

λ = 1−
(
βER1−γ) 1γ .

Thus λ = φ.

Proof of Theorem 3. The proof requires several steps.

Lemma 6 The wealth accumulation process (at) is ψ−irreducible.

Proof. First we show that the process (at) is ϕ−irreducible, i.e. there exists a non
trivial measure ϕ on [y

¯
,∞) such that if ϕ(A) > 0, the probability that the process enters

the set A in finite time is strictly positive for any initial condition (see Chapter 4 of
Meyn and Tweedie (2009)).
We construct a measure ϕ on [y

¯
,∞) such that

ϕ(A) =

∫
A

f(y)dy.

Note that the borrowing constraint binds in finite time with a positive probability
for ∀a0 ∈ [y

¯
,∞). Suppose not. For any finite t ≥ 0, we have at >y

¯
and u′(ct) =

βERt+1u
′(ct+1). Following the same procedure as in the proof of lemma 2, we obtain a
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contradiction. If the borrowing constraint binds at period t, then at+1 = yt+1. Thus any
set A such that

∫
A
f(y)dy > 0 can be reached in finite time with a positive probability.

The process (at) is ϕ−irreducible.
By Proposition 4.2.2, there exists a probability measure ψ on [y

¯
,∞) such that the

process {at+1}∞t=0 is ψ−irreducible, since it is ϕ−irreducible.

Lemma 7 Under Assumption 4, a = y
¯
is a reflecting barrier of the process (at).

Proof. If at =y
¯
, then there exists ŷ close to ȳ such that Pr(at+1 ∈ [ŷ, ȳ]|at =y

¯
) =

Pr(yt+1 ∈ [ŷ, ȳ]) > 0, since s(y
¯
) = 0. To show that at+2 can be greater than ȳ with a

positive probability, it is suffi cient to show that s(ȳ) > 0. Suppose that s(ȳ) = 0. Thus
s(a) = 0 for a ∈ [y

¯
, ȳ]. Thus by the Euler equation we have

(ȳ)−γ ≥ βE
[
Rt (yt)

−γ] .
This is impossible under Assumption 4. Thus s(ȳ) > 0 and a =y

¯
is a reflecting barrier

of the process {at+1}∞t=0.
To show that there exists a unique stationary wealth distribution, we have to show

that the process (at) is ergodic. Actually, we can show that it is geometrically ergodic.

Lemma 8 The process {at+1}∞t=0 is geometrically ergodic.

Proof. To show that the process (at) is geometrically ergodic, we use part (iii) of
Theorem 15.0.1 of Meyn and Tweedie (2009). We need to verify that

a the process {at+1}∞t=0 is ψ−irreducible;

b the process {at+1}∞t=0 is aperiodic;
13 and

c there exists a petite set C,14 constants b < ∞, ρ > 0 and a function V ≥ 1 finite at
some point in [y

¯
,∞) satisfying

EV (at+1)− V (at) ≤ −ρV (at) + bIC(at), ∀at ∈ [y
¯
,∞).

By Lemma 6, the process {at+1}∞t=0 is ψ−irreducible.
For a ϕ−irreducible Markov process, when there exists a v1−small set A with v1(A) >

0,15 then the stochastic process is called strongly aperiodic; see Meyn and Tweedie (2009,
p. 114). We construct a measure v1 on [y

¯
,∞) such that

v1(A) =

∫
A

f(y)dy.

13For the definition of aperiodic, see page 114 of Meyn and Tweedie (2009).
14For the definition of petite sets, see page 117 of Meyn and Tweedie (2009).
15For the definition of small sets, see page 102 of Meyn and Tweedie (2009).
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By lemma 2, we know that s(a) = 0, ∀a ∈ [y
¯
, ζ]. Thus [y

¯
, ζ] is v1−small and v1([y

¯
, ζ]) =∫ ζ

y
¯
f(y)dy > 0. The process (at) is strongly aperiodic.

We now show that an interval [y
¯
,B] is a petite set for ∀B >y

¯
. To show this, we first

show that R
¯
s(a)+y

¯
< a for a ∈ (y

¯
,∞). For s(a) = 0, this is obviously true. For s(a) > 0,

suppose that R
¯
s(a)+y

¯
≥ a, we have

u′(c(a)) = βERtu
′(c(Rts(a) + y)) ≤ βERtu

′(c(a)).

We obtain a contradiction since Assumption 2 implies that βERt < 1. Also by Lemma
2, there exists an interval [y

¯
, ζ], such that s(a) = 0, ∀a ∈ [y

¯
, ζ]. For an interval [y

¯
,B],

∀a0 ∈ [y
¯
,B], there exists a common t such that the borrowing constraint binds at period

t with a positive probability. Then for any set A ⊂ [y
¯
, ȳ], Pr(at+1 ∈ A|s(at) = 0) =∫

A
f(y)dy. Note that a t−step probability transition kernel is the probability transition

kernel of a specific sampled chain. Thus we construct a measure va on [y
¯
,∞) such that

va has a positive measure on [y
¯
, ȳ] and va((ȳ,∞)) = 0. The t−step probability transition

kernel of a process starting from ∀a0 ∈ [y
¯
,B] is greater than the measure va. An interval

[y
¯
,B] is a petite set for ∀B >y

¯
.

We pick a function V (a) = a + 1, ∀a ∈ [y
¯
,∞). Thus V (a) > 1 for a ∈ [y

¯
,∞).

Pick 0 < q < 1 − µERt. Let ρ = 1 − µERt − q > 0 and b = 1 − µERt + Ey. Pick
B > y

¯
, such that B + 1 ≥ b

q
. Let C = [y

¯
,B]. Thus C is a petite set. Therefore, for

∀at ∈ [y
¯
,∞), we have

EV (at+1)− V (at) = E (at+1)− at
≤ − (1− µERt)V (at) + 1− µERt + Ey

≤ −ρV (at) + bIC(at)

where IC(·) is an indicator function.
By Theorem 15.0.1 of Meyn and Tweedie (2009) the process (at) is geometrically

ergodic.

We now show that the stationary distribution, a consequence geometric ergodicity,
has a fat tail. Since s(a)

a
is increasing in a and s(a)

a
approaches µ as a goes to infinity, we

can pick a large aε such that

µ− s(aε)

aε
< ε.

Let

µε =
s(aε)

aε
.

Thus µ− ε < µε ≤ µ.
Let

l(a) =

{
s(a), a ≤ aε

µεa, a ≥ aε
.
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Note that l(a) ≤ s(a) for ∀a ∈ [y
¯
,∞), since s(a)

a
is increasing in a. The function l(a) is

Lipschitz continuous, since s(a) is Lipschitz continuous.
Let

ψ(a) = Rtl(a) + y.

Nowwe apply Theorem 1.8 of Mirek (2011), to show that the stochastic process {ãt+1}∞t=0,
induced by ãt+1 = ψ(ãt), has a unique stationary distribution and that the tail of the
stationary distribution for ãt+1 is asymptotic to a Pareto law, i.e.

lim
a→∞

Pr(ãt+1 > a)

a−α
= C,

where C is a positive constant.
In order to apply Theorem 1.8 of Mirek (2011), we need to verify Assumption 1.6

and Assumption 1.7 of Mirek (2011).
By the definition of ψ(·) we have

lim
τ→0

[
τψ

(
1

τ
a

)]
= M εa for ∀a ∈ [y

¯
,∞).

Let
Nt = ΩRt + yt

where
Ω = max

a∈[y
¯
,aε]
|s(a)− µεa|.

It is easy to verify that

|ψ(a)−M εa| < Nt for ∀a ∈ [y
¯
,∞).

Thus ψ(·) satisfies Assumption 1.6 (Shape of the mappings) of Mirek (2011).
Obviously, the conditional law of logM ε is non arithmetic. Let h(d) = logE (M ε)d.

By Assumption 2 we have E (µRt) < 1. Thus h(1) = logE (M ε) ≤ logE (µR) < 0. We
now show that Assumption 2 and Assumption 3 imply that there exists κ > 1 such that
µκE(Rt)

κ > 1. By Jensen’s inequality we have E(Rt)
1−γ ≥ (ERt)

1−γ. And Assumption
2 implies that βERt < 1. Thus

µ =
(
βE(Rt)

1−γ) 1γ ≥ β.

Thus

E (µRt)
κ ≥ E (βRt)

κ ≥
∫
{βRt>1}

(βRt)
κ .

By Assumption 3, Pr(βRt > 1) > 0. Thus there exists κ > 1 such that µκE(Rt)
κ > 1.

We could pick µε such that (µε)κE(Rt)
κ > 1. Thus h(κ) = logE (M ε)κ > 0. By
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Assumption 3, any finite moment of Rt exists. Thus h(d) is a continuous function of d.
Thus there exists α > 1 such that h(α) = 0, i.e. E (M ε)α = 1. Also we know that h(d)
is a convex function of d. Thus there is a unique α > 0, such that E (M ε)α = 1.
Moreover, E [(M ε)α | logM ε|] <∞, sinceM ε has a lower bound, and, by Assumption

3, any finite moment of Rt exists.
We also know that E(Nt)

α < ∞ since yt has bounded support and, by Assumption
3, any finite moment of Rt exists.
Thus M ε and Nt satisfy Assumption 1.7 (Moments condition for the heavy tail) of

Mirek (2011).
By Lemma 7, a =y

¯
is a reflecting barrier of the process {at+1}∞t=0. Also we assume

that the support of Rt is unbounded. Thus the support of the stationary distribution
for ãt+1 is unbounded.
Applying Theorem 1.8 of Mirek (2011), we find that the stationary distribution ãt+1

has a Pareto tail. Finally, we show that the stationary wealth distribution at+1, has a
fat tail.
Pick a0 = ã0. The stochastic process {at+1}∞t=0 is induced by

at+1 = Rt+1s(at) + yt+1.

And the stochastic process {ãt+1}∞t=0 is induced by

ãt+1 = Rt+1l(ãt) + yt+1.

For a path of (Rt, yt), we have at ≥ ãt. Thus for ∀a >y
¯
, we have

Pr(at > a) ≥ Pr(ãt > a).

This implies that
Pr(at+1 > a) ≥ Pr(ãt+1 > a),

since the stochastic processes {at+1}∞t=0 and {ãt+1}∞t=0 are ergodic. Thus

lim inf
a→∞

Pr(at+1 > a)

a−α
≥ lim inf

a→∞

Pr(ãt+1 > a)

a−α
= lim

a→∞

Pr(ãt+1 > a)

a−α
= C. �
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