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Abstract

We study the dynamics of the distribution of wealth in an overlapping gen-
eration economy with �nitely lived agents and inter-generational transmission of
wealth. Financial markets are incomplete, exposing agents to both labor income
and capital income risk. We show that the stationary wealth distribution is a
Pareto distribution in the right tail and that it is capital income risk, rather than
labor income, that drives the properties of the right tail of the wealth distribution.
We also study analytically the dependence of the distribution of wealth, of wealth
inequality in particular, on various �scal policy instruments like capital income
taxes and estate taxes. We show that capital income and estate taxes can signif-
icantly reduce wealth inequality. Finally, we study the e¤ects of di¤erent degrees
of social mobility on the wealth distribution.
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1 Introduction

Rather invariably across a large cross-section of countries and time periods income and
wealth distributions are skewed to the right1 and display heavy upper tails,2 that is,
slowly declining top wealth shares. The top 1% of the richest households in the U.S.
hold over 33% of wealth3 and the top end of the wealth distribution obeys a Pareto
law, the standard statistical model for heavy upper tails.4 The Figure below shows the
distribution of wealth in the U.S. based on data from the Survey of Consumer Finances
in 2004:
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Which characteristics of the wealth accumulation process are responsible for these
stylized facts? In a dynamic overlapping-generation economy with �nitely lived agents
we study the relationship between wealth inequality and the deep structural parameters
of the economy, including �scal policy parameters. We aim at understanding �rst of

1Atkinson (2002), Moriguchi-Saez (2005), Piketty (2001), Piketty-Saez (2003), and Saez-Veall (2003)
document skewed distributions of income with relatively large top shares consistently over the last
century, respectively, in the U.K., Japan, France, the U.S., and Canada. Large top wealth shares in the
U.S. since the 60�s are also documented e.g., by Wol¤ (1987, 2004).

2Heavy upper tails (power law behavior) for the distributions of income and wealth are also well
documented, for example by Nirei-Souma (2004) for income in the U.S. and Japan from 1960 to 1999,
by Clementi-Gallegati (2004) for Italy from 1977 to 2002, and by Dagsvik-Vatne (1999) for Norway in
1998.

3See Wol¤ (2004). While income and wealth are correlated and have qualitatively similar distri-
butions, wealth tends to be more concentrated than income. For instance the Gini coe¢ cient of the
distribution of wealth in the U.S. in 1992 is :78, while it is only :57 for the distribution of income (Diaz
Gimenez-Quadrini-Rios Rull, 1997); see also Feenberg-Poterba (2000).

4Using the richest sample of the U.S., the Forbes 400, during 1988-2003 Klass et al. (2007) �nd e.g.,
that the top end of the wealth distribution obeys a Pareto law with an average exponent of 1:49.
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all heavy upper tails, as they represent one of the main empirical features of wealth
inequality.5

Stochastic labor incomes can in principle generate some skewness in the distribution
of wealth, especially if the labor income is itself skewed and persistent. A lucky streak
of high labor incomes throughout life or across generations can allow the wealth of some
families to grow large. A large literature on incomplete markets studies in fact models
with agents that face uninsurable idiosyncratic labor income (typically referred to as
Bewley models). Yet the standard Bewley models of Aiyagari (1994) and Huggett (1993)
produce low Gini coe¢ cients and cannot generate heavy tails in wealth. The reason is
that precautionary savings tapers o¤ too quickly with high wealth. In order to generate
skewness with heavy tails in wealth distribution, a number of authors have therefore
introduced new features like e.g., heterogeneity of entrepreneurial talent (Quadrini (1999,
2000), Cagetti and De Nardi, 2006).6

In fact, capital income risk is a signi�cant component of the lifetime income uncer-
tainty of individuals and households, in addition to labor income risk. Owner-occupied
housing prices have a large idiosyncratic component (see Flavin and Yamashita, 2002)
and so do private equity holdings of entrepreneurs (Moskowitz and Vissing-Jorgensen,
2002).7 In this paper we introduce uninsurable idiosyncratic shocks to capital income
in addition to labor income in a overlapping generation economy where agents are �-
nitely lived and have a "joy of giving" bequest motive.8 Capital income risk, by inducing
idiosyncratic returns to wealth accumulation, also generates lucky streaks. But the mul-
tiplicative nature of rates of return on wealth generates skewness and thick tails without
relying e.g., on non-homogeneous bequest functions or other forms of heterogeneity across

5A related question in the mathematics of stochastic processes and in statistical physics asks which
stochastic di¤erence equations produce stationary distributions which are Pareto; see e.g., Sornette
(2000) for a survey. For early applications to the distribution of wealth see e.g., Champernowne (1953),
Rutherford (1955) and Wold-Whittle (1957). For the recent econo-physics literature on the subject,
see e.g., Mantegna-Stanley (2000). The stochastic processes which generate Pareto distributions in
this whole literature are exogenous, that is, they are not the result of agents�optimal consumption-
savings decisions. This is problematic, as e.g., the dependence of the distribution of wealth on �scal
policy in the context of these models would necessarily disregard the e¤ects of policy on the agents�
consumption-saving decisions.

6See also Krusell and Smith (1998) for heterogenous discount rates, Castaneda, Gimenez and Rios-
Rull (2003) for life cycle features with social security and progressive taxes, De Nardi (2004) for non-
homogeneous bequest functions, Becker and Tomes (1979) for heterogeneous propensities to save corre-
lated with propensities to bequeath.

7The sum of primary residence (home), private business equity, and investment real estate account
for more than half the total asset of U.S. households in 1998 (Bertaut and Starr-McCluer (2002) from
the Survey of Consumer Finances). See Angeletos (2007) and Benhabib and Zhu (2008) for more
evidence on the macroeconomic relevance of idiosyncratic capital income risk.

8Angeletos-Calvet (2005, 2006) and Angeletos (2007) also study an economy with idiosyncratic capital
income risk, though with a focus on endogenous �uctuations and aggregate savings, respectively. In
McKay (2008) idiosyncratic capital income risk is derived endogenously from agents�optimal search for
asset in �nancial markets.
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agents.
More speci�cally, in our economy the stationary wealth distribution is a Pareto distri-

bution in the right tail.9 Furthermore, consistently with the di¢ culties of Bewley models
in capturing heavy tails, we analytically show that it is capital income risk, rather than
labor income, that drives the properties of the right tail of the wealth distribution.
By means of comparative statics exercises we study the dependence of the distribution
of wealth, of wealth inequality in particular, on various �scal policy instruments like
capital income taxes and estate taxes. We show that capital income and estate taxes
reduce wealth inequality. This is in contrast with the conclusions of Becker and Tomes
(1979).10In Becker and Tomes (1979), in fact, because parents can adjust their bequests,
capital and estate taxes have little, if any, impact of wealth inequality. In our model
capital and estate taxes have instead an e¤ect on the wealth distribution because they
dampen the lucky streaks of persistent high realizations in the rates of return on wealth.
We show by means of simulation that this e¤ect is potentially very strong. Finally, we
study the e¤ects of di¤erent degrees of social mobility on wealth distribution.
Section 2 introduces our model and derives the solution to the individual agent�s

optimization problem. Section 3 gives the characterization of the stationary wealth
distribution as a Pareto law and a discussion of the assumptions underlying the result.
In Section 4 our results for the e¤ects of capital income and estate taxes on wealth
inequality are stated. Section 4 also reports on comparative statics for the bequest
motive, the volatility of returns, and the degree of social mobility as measured by the
correlation of rates of returns on capital across generations. Most proofs and several
technical details are buried in Appendices A-C.

2 An OLG economy with bequests

Consider the overlapping generation (OLG) economy in Yaari (1965) and Blanchard
(1985).11 But consider the case in which each agent lives T periods.12 We assume

9In Benhabib and Bisin (2006) we instead obtain a Pareto distribution of wealth in an economy with
no income shocks and a constant probability of death.
10Similarly to Becker and Tomes (1979), Castaneda, Diaz Jimenez, and Rios Rull (2003) and Cagetti-

De Nardi (2007) �nd, in calibrated models, small e¤ects of estate taxes on the wealth distribution.
11More speci�cally, we consider the formulation with endogenous bequests in Yaari (1965). Bequests

however do not fully re�ect the intergenerational transfers, in particular inter-vivos transfers, that play
an important role in the aggregate capital accumulation. Kotliko¤ and Summers (1981) �nd that
intergenerational transfers account for sustaining the vast majority, up to 70%, of the aggregate U.S.
capital formation. See also Gale and Scholtz (1994) for more moderate �ndings on this topic, estimating
intergenerational transfers at 50%. For an account of the the role of inhertance for the Forbes 400 see
Elwood et al. (1997) and Burris (2000).
12In Blanchard (1985) and Yaari (1965) each agent at time t has instead a constant probability of

death, p. This assumption about the demographic structure is often referred to as perpetual youth. We
study the dynamics of the wealth distribution in this case in a companion paper, Benhabib-Bisin (2008).
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that both the rate of return on wealth as well earnings are stochastic across agents
and generations in the economy. We shall impose however the rate of return that an
agent earns during his lifetime is constant, and that his income at birth, drawn from a
distribution, grows deterministically until his death at age T . We �rst describe then the
deterministic problem of a generic agent born at time s.
An agent born at time s; besides inheriting initial wealth w(s; s); also receives labor

income y (t) during t 2 [s; T ]. We assume that there is no stochastic component a¤ecting
wealth accumulation once the rate of return on wealth r is drawn at birth, and that each
agent�s initial income endowment, also drawn from a distribution at birth, grows at a
deterministic rate g : y (t) = yeg(t�s). The rate of return on wealth r, is net of the
capital income tax �; imposed for simplicity on wealth holdings. Let c(s; t) and w(s; t)
denote, respectively, consumption and wealth at t of an agent born at s.
An agent born at time s dies, at s + T , with wealth w(s; s + T ): Each agent has

a single child, born in the economy at the agent�s death. Let b denote the estate tax.
At birth, each child inherits w(s; s) = (1 � b)w(s � T; s) from his parent. Each agent�s
momentary utility function, u (c (s; t)), satis�es the standard monotonicity and concavity
assumptions. Agents also have a preference for leaving bequests to their children. In
particular, we assume "joy of giving" preferences for bequests: the parent�s utility from
bequests is � ((1� b)w(s; s+ T )), where � denotes an increasing bequest function.13

Assumption 1 Preferences satisfy:

u(c) =
c1��

1� � ; � (w) = �
w1��

1� � ;

with elasticity � � 1: Furthermore, we require r � �+ �g and � > 0:

The condition � � 1 is required to produce a stationary non-degenerate wealth
distribution. It guarantees in particular that the interest rate r on wealth is larger
than the endogenous rate of growth of consumption, r��

�
.14 The condition r � � + �g

guarantees that agents will not borrow during their lifetime.15 Finally, � > 0 guarantees
positive bequests.16

The maximization problem of an agent born at time s involves choosing a consump-
tion path, c(s; t); to maximize

13Note that we assume that the argument of the parents�preferences for bequests is after-tax bequests.
We also assume that parents correctly anticipate that bequests are taxed and that this accordingly
reduces their "joy of giving."
14The assumption could be relaxed if we allowed the elasticity of substitution for consumption and

bequest to di¤er, at a notational cost.
15Since r is net of the capital income tax �; the assumption r � �+�g implies an upper bound on �:
16Restricting estate taxes to be less than 100%, b < 1; is necessary for preferences for bequests to be

well de�ned.
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U =

Z s+T

t=s

e��t
c (s; t)1��

1� � dt+ �e��T
[(1� b)w (s; s+ T )]1��

1� � (1)

subject to
_w (s; t) = rw (s; t) + y (t)� c (s; t) (2)

2.1 The optimal consumption path

Let an individual�s age be denoted � = t � s: Let human capital of an agent born at s
at time t; h(s; t); be de�ned as:

h (s; t) =

Z s+T

t

y(�)e� (r)�d�

We aim at solving for consumption c (s; t) in terms of �nancial and human capital
w (s; t) + h (s; t): We have the following characterization of consumption.

Proposition 1 The optimal consumption path satis�es

c (s; t) = m(�) (w (s; t) + h (s; t)) ;

where the propensity to consume out of �nancial and human wealth, m(�); is independent
of w (s; t) and h (s; t). Furthermore, m(�) is i) decreasing in age � ; ii) decreasing in
the estate tax b and in capital income tax �, iii) independent of b for � = 1:

See Appendix A for the proof. The closed form solution for m(�) is equation (12).

2.2 The dynamics of individual wealth

Let w (�) be the wealth of an agent of age � born with wealth w (0) : Substituting the
optimal consumption path into (2), we can write the dynamics of individual wealth as
a function of age � , to obtain the following linear di¤erential equation with variable
coe¢ cients:

_w (�) = ~r (�)w (�) + q (�) y (3)

It has a solution of the form

w (�) = �w(r; �)w (0) + �y(r)y

The closed form solution is given in Appendix A, Proposition A.1.
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3 The distribution of wealth

We now characterize the properties of the wealth distribution in our OLG economy with
�nitely lived agents, inter-generational transmission of wealth, and redistributive �scal
policy. We show that the stationary wealth distribution obeys a Pareto law in the right
tail. As we already noted, the Pareto distribution is the standard statistical model for
random variables displaying a thick upper tail, whose density declines as a power law.

3.1 The initial wealth of dynasties

Exploiting the solution for w (T ) in terms of w (0) ; we can construct a discrete time
map for each dynasty equating post-tax bequests from parents with initial wealth of
children. Let wn = w ((n� 1)T; nT ) be the initial wealth of the n�th dynasty. As noted
before, a generic individual of the n�th dynasty faces constant rate of return of wealth
and initial earnings over his/her lifetime. On the other hand, the rate of return of wealth
and earnings are stochastic across individuals and generations; we let (rn)n and

�
yeg

0n
�
n

denote, respectively the stochastic process for the rate of return of wealth and initial
earnings; over dynasties n.
We can then construct a stochastic di¤erence equation for the initial wealth of dynas-

ties, mapping wn�1 into wn.17 It is in fact convenient to work with discounted variables:

zn =
�
e�g

0
�n
wn; zn�1 =

�
e�g

0
�n�1

wn�1

We thus obtain the following a stochastic di¤erence equation of the form:

zn+1 = �nzn + �n (4)

where (�n; �n)n = (� (rn) ; � (rn; yn))n are stochastic processes induced by (rn; yn)n; see
Appendix B, equations (16-18) for closed form solutions of � (rn) and � (rn; yn). A simple
form for � (rn) and � (rn; yn) is obtained for logarithmic preferences, � = 1; if we also
require that � = �: In this case

�n = (1� b)e(rn��)T�g0

�n = (1� b) ernT�g0
1� e�(rn�g)T

�
1 + e��

�
e(rn�g)(T��) � 1

��
rn � g

yn

17See Appendix A for the derivation.
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3.1.1 The stationary distribution of initial wealth

In this section we study conditions on the stochastic process (rn; yn)n which guarantee
that the initial wealth process de�ned by (4) is ergodic.18 We then apply a theorem
from Saporta (2004, 2005) to characterize the tail of the stationary distribution of initial
wealth. While the tail of the stationary distribution of initial wealth is easily charac-
terized in the special case in which (rn)n and (yn)n are i:i:d:,19 more general stochastic
processes are required for a theory of distribution of wealth. A positive auto-correlation
of rn and yn is required to capture variations in social mobility in the economy, e.g.,
economies in which returns on wealth and labor earning abilities are in part transmitted
across generations. Similarly, it is important to allow for the correlation between rn and
yn, that is, to allow e.g., for agents with high labor income to have better opportunities
for higher returns on wealth in �nancial markets.20

We proceed therefore with appropriately weaker assumptions on (rn; yn)n:

Assumption 2 The stochastic process (rn; yn)n is a real, irreducible, aperiodic, station-
ary Markov chain with �nite state space �r� �y := fr1; :::; rmg� fy1; :::; ylg. Furthermore
satis�es:

Pr (rn; yn j rn�1; yn�1) = Pr (rn; yn j rn�1) ;
where Pr (rn; yn j rn�1; yn�1) denotes the conditional probability of (rn; yn) given (rn�1; yn�1) :

While Assumption 2 requires rn to be independent of (yn�1; yn�2:::), it leaves the auto-
correlation of (rn)n unrestricted, in the space of Markov chains.

21 Also, Assumption 2
allows for (a restricted form of) auto-correlation of (yn)n and for the correlation of yn
and rn: This assumption would be satis�ed, for instance, if a single Markov process,
corresponding e.g., to productivity shocks, drove returns on capital (rn)n ; as well as
labor income (yn)n : Following Roitershtein (2007), we say that a stochastic process
(rn; yn)n which satis�es Assumption 2 is a Markov Modulated chain.

22

Recall the stochastic di¤erence equation zn+1 = �nzn+�n; where zn is the discounted
initial wealth of generation n: The multiplicative component �n can be interpreted as
the e¤ective lifetime rate of return on initial wealth from one generation to the next,

18We avoid as much as possible the notation required for formal de�nitions on probability spaces and
stochastic processes. The costs in terms of precision seems overwhelmed by the gain of simplicity. Given
a random variable xn; for instance, we simply denote the associated stochastic process as (xn)n :
19The characterization is an application of the well-known Kesten-Goldie Theorem in this case, as �n

and �n are i.i.d. if rn and yn are. See Appendix C.
20See Arrow (1987) and McKay (2008) for models in which such correlations arise endogenously from

non-homogeneous portolio choices in �nancial markets.
21In fact the restriction to Markov chains is just for convenience. See Roitersthein (2007) for a related

analysis applicable to general Markov processes.
22For the use of Markov Modulated chains, see Saporta (2005) in her remarks following Theorem 2,

or Saporta (2004), section 2.9, p.80. See instead Roitersthein (2007) for general Markov Modulated
processes.
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after subtracting the fraction of lifetime wealth consumed, and before adding e¤ective
lifetime earnings, netted for the a¢ ne component of lifetime consumption.23 The additive
component �n can in turn be interpreted as a measure of e¤ective lifetime labor income
(again after subtracting the a¢ ne part of consumption). Intuitively then, to induce a
limit stationary distribution of (zn)n it is required that the contractive and expansive
components of the e¤ective rate of return tend to balance, i.e., that the distribution
of �n display enough mass on �n < 1 as well some as on �n > 1; and that e¤ective
earnings �n be positive and bounded, hence acting as a re�ecting barrier.We say that
a stochastic process (�n; �n)n which statis�es this properties is re�ective. We hence
impose assumptions on (rn; yn)n which guarantee that the induced process (�n; �n)n =
(� (rn) ; � (rn; yn))n is re�ective.
Let P denote the transition matrix of (rn)n. Let �(�r) denote the state space of (�n)n

as induced by the map � (rn) :24

Assumption 3 �r = fr1; :::; rmg, �y = fy1; :::; ylg and P are such that: (i) ri; yj > 0, for
i = 1; :::m and j = 1; :::l; (ii) P�(�r) < 1; (iii) 9ri such that � (ri) > 1, (iv) the elements
of the trace of the transition matrix P are positive; that is Pii > 0; for any i:

Note that condition ii), P�(�r) < 1; implies that the column sums of AP 0 are < 1:
In turn, the i0th column sum of AP 0 equals the expected value of �n conditional on
�n�1 = �i. Condition ii) therefore implies that, for any given �n�1, �n is < 1 in
expected value.
Let the shorthand �� = f� (r1) ; :::; � (rm)g = f�1; :::�mg denote the induced state

space of (�n)n and � =
�
�1; :::�lm

	
the state space of (�n)n.

Proposition 2 Assumptions 2 on (rn; yn)n imply that (�n; �n)n is a Markov Modulated
chain. Furthermore, Assumption 3 implies that (�n; �n)n is re�ective, that is, it satis�es:
(i) (�n; �n)n is > 0; (ii) P �� < 1; (iii) �i > 1 for some i = 1; :::m, (iv) the diagonal
elements of the transition matrix P of �n are positive:

Let A be the diagonal matrix with elements Aii = �i; and Aij = 0; j 6= i: Having
established that (�n; �n)n is a re�ective process, we can prove the following Proposition,
based on a Theorem by Saporta (2005).

23A realization of �n = � (rn) < 1 should not, however, be interpreted as a negative return in the
conventional sense. At any instant the rate of return on wealth for an agent is a realization of rn > 0;
that is, positive. Also, note that, because bequests are positive under our assumptions, �n is also
positive; see the Proof of Proposition 2.
24In the proof of Proposition 2, Appendix B, we show that the state space of (�n; �n)n is well de�ned.

Note also that, by Assumption 2, (rn)n converges to a stationary distribution and hence (� (rn))n also
converges to a stationary distribution.
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Theorem 1 (Saporta (2005),Thm 1).Consider

zn+1 = �nzn + �n; z0 > 0

Let (�n; �n)n be a re�ective and regular (as in Assumption A.1, Appendix B in Section
7.1) Markov Modulated process.25 Then the tail of the stationary distribution of zn,
P:>(zn > z); is asymptotic to a Pareto law

Pr >(zn > z) � cz��

where � > 1 satis�es
� (A�P 0) = 1

and where � (A�P 0) is the dominant root of A�P 0:

Proof. The Proposition follows from Saporta (2005), Theorem 1, if we show i) that
there exists a � that solves � (A�P 0) = 1; and that ii) such � is > 1. Saporta shows that
� = 0 is a solution to � (A�P 0) = 1; or equivalently to ln (� (A�P 0)) = 0: This follows
from A0 = I and P being a stochastic matrix. Let E� (r) denote the expected value of
�n at its stationary distribution (which exists as it is implied by the ergodicity of (rn)n,
in turn a consequence of Assumption 2). Saporta, under the assumption E� (r) < 1;

shows that d ln�(A�P 0)
��

< 0 at � = 0; and that ln (� (A�P 0)) is a convex function of �.26

Therefore, if there exists another solution � > 0 for ln (� (A�P 0)) = 0; it is positive and
unique.
To assure that � > 1 we replace the condition E� (r) < 1 with (ii) of Proposition 3,

P �� < 1: This implies that the column sums of AP 0 are < 1: Since AP 0 is positive and
irreducible, its dominant root is smaller than the maximum column sum. Therefore for
� = 1; � (A�P 0) = � (AP 0) < 1. Now note that if (�n; �n)n is re�ective, by Proposition
2, Pii > 0 and �i > 1; for some i:This implies that the trace of A�P 0 goes to in�nity if
� does (see also Saporta (2004) Proposition 2.7). But the trace is the sum of the roots
so the dominant root of A�P 0; � (A�P 0) ; goes to in�nity with �. It follows that for the
solution of ln (� (A�P 0)) = 0;we must have � > 1: This proves ii).
Recall that the matrix AP 0 has the property that the i0th column sum equals the

expected value of �n conditional on �n�1 = �i. When (�n)n is i:i:d:, P has identical
rows, so transition probabilities do not depend on the state �i: In this case A�P 0 has
identical column sums given by E�� and equal to � (A�P 0) :

25The conditions required on the state-space of the process (rn; yn)n to guarantee that (�n; �n)n is
regular are innocuous and hold generically. We impose them throughout. See Appendix B for technical
details.
26This follows because limn!1

1
n lnE (�0��1:::�n�1)

�
= ln (� (A�P 0)) (see Remark 1 below) and the

log-convexity of the moments of non-negative random variables (see Loeve(1977), p. 158).
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Remark 1 The analysis of this section holds more generally, when (�n; �n)n is not
restricted to be a �nite Markov chain. For general Markov processes, an appropriate
de�nition of Markov Modulated processes, as well as of the regularity and re�ectivity
conditions, allows us to apply Theorem 1 in Roitershtein (2007) to show that the tail of
the distribution is asymptotic to a Pareto law

Pr >(zn > z) � cz��

where � > 1 satis�es

lim
N!1

 
E
N�1Y
n=0

(��n)
�

! 1
N

= 1:27 (5)

In fact, Saporta (2005, Proposition 1, section 4.1) establishes that, for �nite Markov

chains, limN!1

 
E
N�1Y
n=0

(��n)
�

! 1
N

= � (A�P 0). Note also that, when (�n)n is i:i:d:; condition

(5) reduces to E (�)� = 1; a result established by Kesten (1973) and Goldie (1991); see
Appendix C.

We now turn to the characterization of the stationary wealth distribution.

3.2 The stationary wealth distribution

We have shown that the stationary distribution of initial wealth in our economy has a
power tail. The stationary wealth distribution can be constructed as follows.

By Proposition A. 1 in Appendix A, the wealth at age � of an agent born with
wealth z (0), return r, and income y is

z (�) = �w(r; �)z (0) + �y(r)y (6)

Note that (6) is a deterministic map, as we assumed that r and y are �xed for any
agent during his/her lifetime. If we denote with f0(z(0)) the density of the stationary
distribution of initial wealth, therefore, the density of the stationary distribution of
wealth of agent of age � ; f� (z(�)) is obtained simply by a change of variable through the
map (6).28

27Of course the term
N�1Y
n=0

��n arises from using repeated substitions for zn: See Brandt (1986) for

general conditions to obtain an ergodic solution for stationary stochastic processes satisfying (4).
28The change of variable implies:

f� (z(�)) = f0(
z(�)� �y(r)y
�w(r; �)

)
1

�w(r; �)

Recall that (rn; yn)n is bounded and therefore so are �w(r; �) and �y(r)y:Therefore, f� (z(�)) is asymp-
totic to a Pareto law with tail � if f0(z(0)) is.
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The density of the distribution of wealth z in the population is then

f(z) =

Z T

0

f� (z)d�

But the asymptotic power law property with the same power � for each age is pre-
served under integration. We can then conclude the following:

Proposition 3 Suppose the tail of the limiting distribution of initial wealth zn is as-
ymptotic to a Pareto law, P:>(zn > z) � cz��; then the tail of the distribution of wealth
in the population is also asymptotic to a Pareto law, with the same exponent �:

4 Wealth inequality: some comparative statics

We study in this section the tail of the stationary wealth distribution as a function of
preference parameters and �scal policies. In particular, we study stationary wealth
inequality as measured by the Gini coe¢ cient of the tail of the distribution of wealth.
Theorem 1 allows us to solve for the exponent of the Pareto distribution, �, which char-
acterizes the tail of the distribution of normalized wealth. But, for a Pareto distribution,
the exponent � is inversely linked to the Gini coe¢ cient G of the distribution, a measure
of its inequality:29

G =
1

2�� 1 : (7)

However, the e¤ects of the structural parameters and of �scal policy on wealth inequality
depend in turn on the auto-correlation of returns and earnings, a measure of social mo-
bility. We distinguish two di¤erent cases in our analysis. First consider the case in which
(�n,�n) are independent over generations (not auto-correlated). Independence implies
that the children of generations which experienced high (resp. low) e¤ective returns on
wealth and/or high (resp. low) e¤ective earnings will not, on average, experience high
(resp. low) returns on wealth and/or high (resp. low) earnings. We refer to this case,
abusing words somewhat, as the case of perfect social mobility.30 The second case we
study is naturally one in which (�n,�n) are positively auto-correlated, so that social
mobility is reduced. We refer to this case as the case of moderate social mobility. We
may in fact use the auto-correlation in the stochastic process of (�n,�n) as an inverse
measure of social mobility.
We have therefore the tools to study how wealth inequality, as measured by the

Gini coe¢ cient of the tail of the stationary distribution of wealth G; depends on the

29See e.g., Chipman (1976).
30Words are abused because in priciple an economic environment in which (�n; �n) are negatively

auto-correlated could represent more social mobility . We do not consider this case of any relevance in
practice.
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structural parameters of our economy and on �scal policies. First, we shall study how
di¤erent compositions of capital and labor income risk a¤ect wealth inequality. Second,
we will study the e¤ects of preferences, in particular the intensity of the bequest motive.
Third, we will characterize the e¤ects of both capital income and estate taxes on wealth
inequality. Finally, we will address the relationship between social mobility and wealth
inequality.

4.1 Capital and labor income risk

Theorem 1 characterizes the tail of the wealth distribution when the process (�n; �n)n
is re�ective. It follows from the Theorem that, as long as (�n; �n)n is re�ective, the
stochastic properties of labor income risk, (�n)n ; have no e¤ect on the tail stationary
distribution of wealth. In fact heavy tails in the stationary distribution require that
the economy has su¢ cient capital income risk, with some �i > 1. Consider instead an
economy with limited capital income risk, where �i � � < 1 for all i and where ��
is the upper bound of �n: In this case it is straightforward to show that the stationary
distribution of wealth would be bounded above by �

1�� .
31

More generally, we can also show that wealth inequality increases with the capital
income risk agents face in the economy, as measured by a "mean preserving spread" on
the distribution of the stochastic process of "e¤ective return on wealth" (�n)n :

De�nition 1 De�ne a mean preserving spread on the distribution of the stochastic
process of (�n)n as any change of the state space �� and/or of the transition matrix P

which increases the variance of limN!1

 
N�1Y
n=0

��n

! 1
N

while keeping the mean constant.

Note that, for a �nite Markov chain, the mean of the random variable limN!1

 
N�1Y
n=0

��n

! 1
N

is equal to the dominant root of AP 0; � (AP 0) : In the i:i:d: case, E (�) = � (AP 0).

Proposition 4 Wealth inequality, as measured by the Gini coe¢ cient of the tail G,
increases with a mean preserving spread on the distribution of the stochastic process of
(�n)n.

Proof. De�ne the random variable  = limN!1

 
N�1Y
n=0

��n

! 1
N

(the limit is well-de�ned

under Assumption 2). Since � > 1; � is a convex function, and hence �� a concave
31Of course this is true a fortiori in the case where there is no capital risk and �n = � < 1:
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function in . Suppose we perform a mean preserving spread of the random variable ;
given by 0 (let a prime denote a variable after the spread). By second order stochastic
dominance we have E (��) > E (� (0)�) so E (�) < E ((0)�) and 1 = E� �
E (0)� : It follows that if �0 solves E

�
(0)�

0
�
= 1 we must have �0 � �; and a higher

associated Gini coe¢ cient G0 > G:
We conclude that it is capital income risk (idiosyncratic risk on return on capital), and

not labor income risk, that determines the wealth inequality of the tail of the stationary
distribution given by G: the higher capital income risk, the more unequal is wealth.

4.2 The bequest motive

Wealth inequality depends on the bequest motive, as measured by the preference para-
meter �: An agent with a higher preference for bequests will save more and accumulate
wealth faster with a higher �n; which in turn will lead to higher wealth inequality.

Proposition 5 Wealth inequality, as measured by the Gini coe¢ cient of the tail G;
increases with the bequest motive �:

Proof. From the de�nition of �n,32 we obtain @�n
@�

> 0:Thus an in�nitesimal increase
in � shifts the state space a to the right. Therefore elements of [A�P 0] increase, which
implies that the dominant root � (A�P 0) increases. However we know from Saporta
(2005) that ln (� (A�P 0)) is a convex function of �; and is increasing at the positive value
of � which solves ln� (A�P 0) = 0: Therefore to preserve ln (� (A�P 0)) = 0, � must decline
and G must increase.

4.3 Fiscal policy

Fiscal policies in our economy are captured by the parameters b and �; representing,
respectively, the estate tax and the capital income tax.33

Proposition 6 Wealth inequality, as measured by the Gini coe¢ cient of the tail G, is
decreasing in the estate tax b and in the capital tax �:

Proof. From (17), we have

�n = (1� b)e�g0 A(rn)B(b)e
rnT

A(rn)B(b)� 1 + e(A(rn)T

32See Appendix B, equation (17).
33Recall that the random rate of return rn in our economy is de�ned net of the capital income �:
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where A(rn) = rn � rn��
�

and B(b) = �
1
� (1� b)

1��
� : Dropping the dependence on rn

and b for notational simplicity, denoting dB
db
with B0; and computing @�n

@b
; after tedious

simpli�cations, we obtain:

sign

�
@�n
@b

�
< 0 if (1� b)B0 �B < 0

But (1 � b)B0 = ��1
�
B(b) and under Assumption 1, ��1

�
< 1:We conclude then that

@�n
@b
< 0: Now the proof is identical to the proof of Proposition 5 in the reverse direction

since @�n
@b
< 0 whereas @�n

@�
> 0:

Furthermore, let �(rn) denote a non-linear tax on capital, such that the net rate of
return of monetary wealth for generation n becomes rn (1� �(rn)) : Since @�n

@r
> 0; the

Corollary below follows immediately from the argument used in the proof of Proposition
6.

Corollary 1 Wealth inequality, as measured by the Gini coe¢ cient of the tail G, is
decreasing if a non-linear tax on capital �(rn) is applied which induces a relative shift of
the state space:to the left.

The results above indicate that taxes have a dampening e¤ect on the tail of wealth
distribution. This is the case despite the presence of bequest motives. Becker and Tomes
(1979), on the contrary, �nd that tax increases ambiguous e¤ects on wealth inequality
at the stationary distribution. In their model the utility of parents depends on the
expected income of children, and parents can anticipate and essentially o¤set any �scal
policy, dampening any wealth equalizing aspects of these policies. In our model both
capital income and estate taxes dampen the e¤ect of luck acting through the stochastic
returns on capital. The e¤ect of a streak of luck acting multiplicatively on wealth can
be powerful and in fact generates the skewness and fat tails of the wealth distribution.
Any dampening either of returns to wealth through capital taxes or of the transmission
of wealth through estate taxes will therefore tend to �atten the heavy tails of the wealth
distribution. We conclude that capital income risk, inducing a stochastic return on
capital, is the main reason why our results on �scal policies di¤er substantially from
those of Becker and Tomes (1979). In Section 5, we will also show by means of a simple
calibration that the tail of the stationary wealth distribution, hence its inequality, is in
fact quite sensitive to variations in �scal policy, both capital income taxes as well as
estate taxes.

4.4 Social mobility

We consider here an example for the case in which social mobility is moderate to study
how social mobility a¤ects the wealth inequality index G: Consider the simple case in
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which �n is an two-state irreducible Markov Chain on[�l; �h]; with �l < 1 < �h; and34

P =

�
�l 1� �l

1� �h �h

�
In this case the ergodic distribution of �n is

�
1��h

2��l��h
; 1��l
2��l��h

�
:To assure that that

there exists a positive � that solves � (A�P 0) = 1;we require that E� (r) < 1; or that the
mean of �n, taken with respect to its stationary distribution is less than 1. This implies

(1� �h) ln�l + (1� �l) ln�h < 0 (8)

The solution of � is given by:

� (A�P 0) =
(�l)

� �l + (�h)
� �h +D

0:5

2
= 1

D = (�l)
2� (�l)

2 + (�h)
2� (�h)

2 + 2 (�l�h)
� (�l�h � 2�l � 2�h + 2)

whereD is the discriminant of the characteristic equation of A�P 0 which must be positive
since � (A�P 0) is real.
We can now do comparative statistics on �: If for simplicity we assume �l = �h = �,

then � solves

(�l)
� �+ (�h)

� �+
�
(�)2

�
(�l)

2� + (�h)
2��+ 2 (�l�h)� (�2 � 4�+ 2)�

2

0:5

= 1:

and can then compute:

d�

d�
=

�
�
(�h)

u + (�l)
� + (�h�l)

� (4�� 8) + �
�
2 (�h)

2� + 2 (�l)
2���

� ((ln�h) (�h)
u + (ln�l) (�l)

�) + 2

�
(ln�h�l) (�h�l)

� (�2 � 4�+ 2)
+�2

�
(ln�h) (eh)

2� + (ln�l) (�l)
2�� �

While d�
d�
is in general hard to sign analytically, all the simulations performed produce

d�
d�
< 0; see next section:

4.5 A simple calibration exercise

As we have already discussed in the Introduction, it has proven hard for standard macro-
economic models, when calibrated to the U.S. economy, to produce wealth distributions
with tails as thick as in the data. While we do not attempt here a full calibration of
our model, in this section we aim at showing that a large range of Gini coe¢ cients of
the tail of the wealth distribution can be obtained by varying preferences for bequests

34See Saporta (2004), sections 2.10.1 and 2.10.2 for an example with a two state Markov chain.
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and tax parameters. In fact, we easily (e.g. under perfect social mobility) obtain Gini
coe¢ cients of the order of :8� :9; larger than observed in the data.
Suppose social mobility is perfect. Calibrate the stationary return rn with a discrete

uniform distribution, taking values 0:01, 0:11 and 0:21; with a mean return �r = 0:11: Set
� = 1; g0 = 0:01; � = 0:04; and the estate tax rate b = 0:20: Finally, set working life
span T = 45: Under this calibration (with perfect social mobility) we obtain for � = :2
a Gini coe¢ cient of 0:72 (see the Figure): As � is increased to :25; the Gini coe¢ cient
rapidly grows over :95:
The Table below illustrates instead the e¤ects of taxes on the Gini coe¢ cient G of

the tail of the distribution of wealth. We calibrate the economy as before, under perfect
social mobility. We also �x � = 0:2: The table shows G as we vary b and �:

bn� 0:15 0:175 0:20

0:10
G = 0:91 G = 0:57 G = 0:34

0:15
G = 0:81 G = 0:50 G = 0:29

0:20
G = 0:72 G = 0:44 G = 0:24

Once again, even under perfect social mobility, a 10% estate tax b and a 15% capital
income tax � induce G = :91. Furthermore, wealth inequality is quite sensitive to
�scal policy in our economy: for the �scal policies considered we obtain Gini coe¢ cients
ranging from :24 to :91: Such high sensitivity is consistent with several studies of the
e¤ects of the tax regimes introduced in Europe after World War II. Higher and more
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progressive taxes did in fact signi�cantly reduce income and wealth inequality in this
historical context; notably, e.g., Lampman (1962) and Kuznets (1955). Most recently,
Piketty (2001) has argued that redistributive taxation may have prevented large income
shares from recovering after the shocks that they experienced during World War II in
France.35

In our calibration exercise G appears more sensitive to capital income taxes than
estate taxes. Nonetheless, an increase of the estate tax rate from 10 to 20 percent
decreases the Gini index between 20 and 30 percent, depending on the level of the
capital income tax.36

This is in contrast with the results of Becker and Tomes (1979), as we have discussed.
It is in constrast also with e.g., Castaneda, Diaz Jimenez, and Rios Rull (2003) and
Cagetti and De Nardi (2007) , who �nd very small (or even perverse) e¤ects of bequest
taxes in their calibrations, in models with a skewed distribution of earnings but no
capital income risk. This suggests a word of caution in evaluating the e¤ects on wealth
inequality of proposed �scal policies like the abolition of estate tax: in economies in
which the capital income risk component is substantial, such policies can have a sizeable
e¤ect in increasing wealth inequality in the tail of the distribution.
Finally, to study the e¤ects of social mobility on wealth inequality, consider the

special economy introduced in the previous section, where �n is a two-state irreducible
Markov Chain on[�l; �h]; with �l < 1 < �h; and

P =

�
�l 1� �l

1� �h �h

�
Let �l = �h = �; �h = 1:15 and �l = 0:8; and note that Condition 8 is always satis�ed
for � 2 (0; 1) since ln 1:15 + ln 0:8 < 0: The Figure below illustrates dG

d�
> 0:37

In the case illustrated in the Figure where �l = �h = �; perfect social mobility corre-
sponds to � = 0:5;moderate mobility to :5 < � < 1, and �nally no mobility corresponds
to � = 1:From the Figure, in the range of perfect mobility to no mobility, � 2 [0:5; 1],
35This line of argument has been extended to the U.S., Japan, and Canada, respectively, by Piketty-

Saez (2003) and Moriguchi-Saez (2005), Saez-Veall (2003).
36The e¤ect is larger the larger is the capital income tax rate, in our calibration.
37Note that for � > 0:73 we can have G > 1 (� < 1): the stationary distribution of wealth does not

have a mean, and the Gini coe¢ cient is not well de�ned. However: replacing Condition (8) above with
(ii) in Proposition 2 gives P �� < 1 which implies:

�l (�l) + (1� �l) (�h) < 1; which implies �l >
�h � 1
�h � el

(1� �h) (�l) + (�h) (�h) < 1; which implies �h <
1� �l
�h � �l

Therefore if �l = �h = �; �h = 1:15 and �l = 0:8 we obtain � 2
�
�h�1
�h��l ;

1��l
�h��l

�
= (0:428; 0:571) and

1 < � 2 (1:98; 3:46) or G 2 (0:17; 0:34) :
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inequality (which is inversely related to �) increases as mobility declines (mobility is
inversely related to �).38

5 Conclusion

The main conclusion of this paper is that capital income risk, that is, idiosyncratic re-
turns on wealth, has a fundamental role in a¤ecting the distribution of wealth. Capital
income risk appears crucial in generating the thick tails observed in wealth distributions
across a large cross-section of countries and time periods. Furthermore, when the wealth
distribution is shaped by capital income risk, wealth inequality is very sensitive to �scal
policies; a result which is often documented empirically but hard to generate in many
classes of models without capital income risk. Higher taxes in e¤ect dampen the multi-
plicative stochastic return on wealth, which is critical to generate the thick tails through
lucky runs.
Interestingly, this role of capital income risk as a determinant of the distribution of

wealth seems to have been lost also by Vilfredo Pareto. He explicitly noted that an
identical stochastic process for wealth across agents will not induce the skewed wealth
distribution that we observe in the data (See Pareto (1897), Note 1 to #962, p. 315-316).

38The same relation would hold in the implausible case of cyclic mobility where � 2 [0; 0:5); provided
we interpret cyclic mobility as social mobility that is higher than perfect mobility. More generally,
there are various measures of social mobility for Markov transitions in the literature; see for example,
Shorrocks (1978), Sommers-Conlisk (1979) or Dardanoni (1993), Section 5. They all satisfy the following:
i) perfect mobility corresponds to a matrix with identical rows, ii) no mobility corresponds to the identity
matrix. An example, suggested by Sommers-Conlisk (1979), is the modulus of the second eigenvalue of
the transition matrix: for our 2� 2 transition matrix;it corresponds to �2 = j�h + �l � 1j:
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He therefore introduced skewness into the distribution of talents or the endowments
of agents (1897, Notes to #962, p. 416). Left with the distribution of talents and
endowments as the main determinant of the wealth distribution, he was perhaps lead to
his "Pareto�s Law," enunciated e.g., by Samuelson (1965) as follows:

In all places and all times, the distribution of income remains the same. Nei-
ther institutional change nor egalitarian taxation can alter this fundamental
constant of social sciences.39

39See Chipman (1976) for a discussion on the controversy between Pareto and Pigou regarding the
interpretation of the Law. To be fair to Pareto, he also had a "political economy" theory of �scal policy
(determined by the controlling elites) which could also explain the "Pareto Law;" see Pareto (1901,
1909).
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6 Appendix A: The agent�s problem

Proof of Prop. 1: The Euler equation for consumption is

_c (s; t) =
r � �
�
c (s; t) (9)

and the (interior) terminal transversality condition:

c (s; s+ T ) = �
�1
� (1� b)

��1
� w (s; s+ T ) (10)

Recall � = t� s, and

h (s; t) =

Z s+T

t

y(�)e� (r)�d�

Since labor income grows at a constant rate, y(t) = egty; we have

h (s; t) =
y (t)

r � g
�
1� e�(r�g)(s+T�t))

�
(11)

Integrating 9, solving and then substituting for terminal wealth from 10 into 2, we can
solve for consumption in terms of �nancial and human capital:

c (s; t) = m(�) (w (s; t) + h (s; t)) ;

where the propensity to consume out of �nancial and human wealth, m(�); satis�es:

m(�) =
1�

r � r��
�

��1 �
1� e(

r��
�
�r)(T��)

�
+ �

1
� (1� b)

1��
� e(

r��
�
�r)(T��)

(12)

The comparative statics with respect to � and b in the statement are now straight-
forward. As for the comparative statics with respect to �, recall that @m

@r
= �@m

@�
. �

6.1 The dynamics of individual wealth in closed form

Substituting the optimal consumption path into (2), we can write the dynamics of indi-
vidual wealth as a function of age � , to obtain the following linear di¤erential equation
with variable coe¢ cients:

_w (�) = ~r (�)w (�) + yq (�) (13)

where

~r (�) =

�
r � 1

A�1 (1� e�A(T��)) + e�A(T��)B

�

q (�) =

 
1�

1
r�g
�
1� e�(r�g)(T��)

�
A�1 (1� e�A(T��)) + e�A(T��)B

!
eg�
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and
A(r) = r � r � �

�
; B(b) = �

1
� (1� b)

1��
� : (14)

The dynamics of individual wealth therefore satis�es the inde�nite integral:

w (�) = e
R
~r(�)d�

�
Z + y

Z
q (�) e�

R
~r(�)d�d�

�
where Z is a constant to be determined by initial conditions. We argued in the text it
has a solution of the form

w (�) = �w(r; �)w (0) + �y(r)y

In fact, we can solve for the dynamics of individual wealth in exact closed form:

Proposition A. 1 The wealth of an individual of age � satis�es:

w (�) = �w(r; �)w (0) + �y(r)y

with

�w(r; �) =
eA(r)T + (A(r)B(b)� 1) eA(r)�
eA(r)T + A(r)B(b)� 1 e (r�A(r))�

�y(r) =
eA(r)T + (A(r)B(b)� 1) eA(r)�

(A(r)B(b)� 1) eA(r)T eA(r)(T��)+r�y(QT (r)�Q0 (r))

where

QT (r) = fQ(r; �)g�=T ; Q0 (r) = fQ(r; �)g�=0 ; and

Q(r; �) =

Z
q (�)

(A(r)B(b)� 1) eA(r)T
eA(r)T + (A(r)B(b)� 1) eA(r)� e

�A(r)(T��)�r�d�

Furthermore, under Assumption 1, w (�) > 0; for any � > 0:

Proof of Proposition A.1. Let A(r) =
�
r � r��

�

�
and B(b) = �

1
� ((1� b))

1��
� : We

drop the argument of A(r) and of B(b) for simplicity in the following.
We �rst computeZ

~r (�) d� =

Z �
r � 1

(A)�1 (1� e�A(T��)) + e�A(T��)B

�
d�

= A (T � �) + r� + ln 1

(AB � 1) eAT
�
eAT + (AB � 1) eA�

�
+ C1
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for C1 to be determined by initial conditions. Therefore,

e�
R
~r(�)d� =

(AB � 1) eAT
eAT + (AB � 1) eA� e

�C1e�A(T��)�r�

We then compute

q (�) =

0@1� 1�e�(r�g)(T��))
r�g�

r � r��
�

��1 �
1� e(

r��
�
�r)(T��)

�
+ e(

r��
�
�r)(T��)�

�1
� ((1� b))

1��
�

1A eg�
q (�) =

 
1�

1
r�g
�
1� e�(r�g)(T��)

�
A�1 (1� e�A(T��)) + e�A(T��)B

!
eg�

We have, therefore,

~Q (r; �) =

Z
q (�) e�

R
~r(�)d�d�

=

Z
q (�)

(AB � 1) eAT
eAT + (AB � 1) eA� e

�C1e�A(T��)�r�d�

and
~QT (t) =

�Z
q (�)

(AB � 1) eAT
eAT + (AB � 1) eA� e

�C1e�A(T��)�r�d

�
j�=T

~Q0 (r) =

�Z
q (�)

(AB � 1) eAT
eAT + (AB � 1) eA� e

�C1e�A(T��)�r�d

�
j�=0

so that

w (�) =

�
eAT + (AB � 1) eA�

�
(AB � 1) eAT eC1eA(T��)+r�

�
Z + y ~Q (r; �)

�

w (T ) =

�
eAT + (AB � 1) eAT

�
(AB � 1) eAT eC1erT

�
Z + y ~QT (r)

�
=

AB

(AB � 1)e
rT eC1

�
Z + y ~QT (r)

�

w (0) =

�
eAT + (AB � 1)

�
(AB � 1) eC1

�
Z + y ~Q0 (r)

�
We can now solve for Z :

e�C1
(AB � 1)

(eAT + AB � 1)w (0)� y
~Q0 (r) = Z;
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and hence,

w (T ) =
AB

(AB � 1)e
C1erT

�
e�C1

(AB � 1)
(eAT + AB � 1)w (0)� y

~Q0 (r) + y ~QT (r)

�
=

AB

(AB � 1)

�
erT (AB � 1)
eAT + (AB � 1)w (0) + e

C1erTy
�
~QT (r)� ~Q0 (r)

��
We can factor out e�C1 from ~Q (r; �) ; so that ~Q (r; �) = e�C1Q (r; �). Then

w (T ) =
AB

(AB � 1)

��
erT (AB � 1)

(eAT + (AB � 1))

�
w (0) +

�
erTy

�
QT (r)�Q0 (r)

���
w (T ) =

AB

(AB � 1)

��
erT (AB � 1)

(eAT + (AB � 1))

�
w (0) +

�
erTy

�
QT (r)�Q0 (r)

���
and

w (�) =

�
eAT + (AB � 1) eA�

�
(AB � 1) eAT eA(T��)+r�

�
(AB � 1)

(eAT + AB � 1)w (0) + y
�
QT (r)�Q0 (r)

��
We now show that w (�) > 0: We have

w (�) =

�
eAT + (AB � 1) eA�

�
eAT

eA(T��)+r� �

�
�

1

(eAT + AB � 1)w (0) +
y(QT (r)�Q0 (r))

(AB � 1)

�
We compute

�
QT (rn)�Q0 (rn)

�
: We have

Q(rn; �) =

Z
q (�)

(AB � 1) eAT
eAT + (AB � 1) eA� e

�A(T��)�r�d�

�
QT (rn)�Q0 (rn)

�
=

Z
q (�) (AB � 1) eAT
eAT + (AB � 1) eA� e

�A(T��)�r�d� j�=T �
Z

q (�) (AB � 1) eAT
eA)T + (AB � 1) eA� e

�A(T��)�r�d� j�=0

Then

w (�)

=

�
eAT + (AB � 1) eA�

�
eAT

eA(T��)+r� �0@ w (0)

(eAT + AB � 1) +

h
y
R q(�)(AB�1)eAT e�A(T��)�r�

eAT+(AB�1)eA� d� j�=T �
R q(�)(AB�1)eAT e�A(T��)�r�

eAT+(AB�1)eA� d� j�=0
i

(AB � 1)

1A
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w (�) =

�
eAT + (AB � 1) eA�

�
eAT

eA(T��)+r� �

�
�

1

(eAT + AB � 1)w (0) + y
Z T

0

q (�)

eAT + (AB � 1) eA� e
(A�r)�d�

�
Consider the case � < T . Note that

�
eAT + (AB � 1) eA�

�
� 0 and A = r �

�
r��
�

�
=

r (1� ��1) + �� > 0: It follows that w (�) > 0 if q (�) > 0:We have

q (�) =

 
1�

1
r�g
�
1� e�(r�g)(T��)

�
A�1 (1� e�A(T��)) + e�A(T��)B

!
eg�

So a su¢ cient condition for q (�) > 0 is 1
r�g
�
1� e�(r�g)(T��)

�
< A�1

�
1� e�A(T��)

�
.

Since x�1
�
1� e�x(T��)

�
is declining in x; q (�) > 0 if A > 0, that is if r��

�
> g or

r > �+ �g:
Furthermore,

w (T ) = ABerT (15)

�
�

1

(eAT + AB � 1)w (0) + y
Z T

0

q (�)

eAT + (AB � 1) eA� e
(A�r)�d�

�
and the same argument apply to show that w (T ) > 0 if B > 0, that is, if � > 0 and
b < 1: �

7 Appendix B: Dynamics of Wealth

We can construct a stochastic di¤erence equation for the initial wealth of dynasties,
mapping wn�1 into wn. From Proposition 1, in fact, dynasty n�s initial wealth wn
satis�es:

wn+1 = (1� b)
A(rn)B(b)e

rnT

(A(rn)B(b)� 1) + eA(rn)T
wn + (1� b) ernTyneg

0n
�
QT (rn)�Q0 (rn)

�
:

Working with discounted variables,

zn =
�
e�g

0
�n
wn; zn�1 =

�
e�g

0
�n�1

wn�1

we obtain the following stochastic di¤erence equation:

zn+1 = �nzn + �n (16)

where

�n (rn) = (1� b) A(rn)B(b)e
rnT

A(rn)B(b)� 1 + eA(rn)T
e�g

0
(17)

�n (rn; yn) = (1� b) ernTyne�g
0 �
QT (rn)�Q0 (rn)

�
(18)
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Thus (�n)n is driven by (rn)n and is independent of (yn)n :
Proof of Proposition 2: Let R = fr1; :::; rmg denote the state space of rn: Sim-

ilarly, let Y = fy1; :::; ylg denote the state space of yn: Let A = f�1 =; :::�mg and
B =

�
�1; :::�lm

	
denote the state spaces of, respectively, �n and �n; as they are in-

duced through the maps (16-18):We shall show that the maps (16-18) are bounded in rn
and yn: Therefore the state spaces of �n and �n are well de�ned. It immediately follows
then that, if (rn; yn)n is a Markov Modulated chain (Assumption 2), so is (�n; �n)n :
We now show that under Assumption 3 (i), (�n; �n)n is > 0; we also show that

(�n; �n)n are bounded with probability 1 in rn and yn: Recall that A(rn) = rn�
rn��
�
> 0

with probability 1 (w.p. 1); since � � 1 by Assumption 1: Also, B(b) = � 1
� (1� b)

1��
� >

0:The denominator of 17 is positive since A(rn)B(b) > 0 and eA(rn)T > 1 and therefore
�n > 0 and bounded. Therefore (�n; �n) is a Markov Modulated Process provided (�n)n
is positive and bounded.
We now show that (�n)n � 0 and is bounded. Recall that

QT (rn) = fQ(rn; �)g j�=T ; Q0 (rn) = fQ(rn; �)g j�=0;

Q(rn; �) =

Z
q (�)

(A(rn)B(b)� 1) eA(rn)T
eA(rn)T + (A(rn)B(b)� 1) eA(rn)�

e�A(r)(T��)�r�d� ;

q (�) =

 
1�

A(r)
r�g

�
1� e�(r�g)(T��)

�
(1 + e�A(r)(T��) (A(r)B(b)� 1))

!
eg�

It is straightforward to see that q (�) is bounded for � 2 [0; T ]:Therefore

q (�)
(A(rn)B(b)� 1) eA(rn)T

eA(rn)T + (A(rn)B(b)� 1) eA(rn)�
e�A(r)(T��)�r�

is bounded for � 2 [0; T ]:It follows that

Q(rn; �) =

Z
q (�)

(A(rn)B(b)� 1) eA(rn)T
eA(rn)T + (A(rn)B(b)� 1) eA(rn)�

e�A(r)(T��)�r�d�

is bounded for � 2 [0; T ]:We conclude then that QT (rn)�Q0 (rn) is bounded. But since
the support of yn is bounded by Assumption 2, �n = (1� b) ernT e�g

0
yn
�
QT (rn)�Q0 (rn)

�
is also bounded.
We now show �n =

�
(1� b) ernT e�g0yn

� �
QT (rn)�Q0 (rn)

�
> 0: To see this, �rst note

that
�
QT (rn)�Q0 (rn)

�
is independent of w (s; t) ; and in particular, of w (s; s) = w (0) :

So set w (0) = 0 If w (0) = 0; then

w (T )�
�

erTA (rn)B (b)

(eA(rn)T + (A (rn)B (b)� 1))

�
w (0) = w (T ) = w (s; s+ T )

= erT
�
QT (rn)�Q0 (rn)

�
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So we have to show that w (T ) = w (s; s+ T ) > 0 if w (0) = 0: Using (9) and (2),
integrating and using (10) to eliminate w(s; s+ T ); we get

c (s; t)

Z s+T

t

e�(r(1��
�1)+��1�)(T��)d� (19)

= w (s; t) + h (s; t)� w(s; s+ T )e�r(s+T�t)

= w (s; t) + h (s; t)� c (s; t) e�((1���1)r+��1�)(s+T�t)� 1
� ((1� b))

1��
� (20)

c (s; t) =
w (s; t) + h (s; t)

(r (1� ��1) + ��1�)�1
�
1� e�(r(1���1)+��1�)(s+T�t)

�
+e�((1��

�1)r+��1�)(s+T�t)�
1
� ((1� b))

1��
�

(21)

From (10) we also have

c (s; s+ T ) =
w (s; s+ T )

�
1
� ((1� b))

1��
�

(22)

c (s; s+ T ) = c (s; s) e(�
�1(r��))T (23)

c (s; s) e(�
�1(r��))T =

w (s; s+ T )

�
1
� ((1� b))

1��
�

(24)

Using de�nition of h; and the assumption that w (s; s) = 0;

c (s; s)
(r (1� ��1) + ��1�)�1

�
1� e�(r(1���1)+��1�)T

�
+e�((1��

�1)r+��1�)T�
1
� ((1� b))

1��
�

= y (t) (r � g)�1
�
1� e�(r�g)T

�
Substituting into 10,

y (r � g)�1
�
1� e�(r�g)T

�
e(�

�1(r��))T

(r (1� ��1) + ��1�)�1 (1� e�(r(1���1)+��1�)T ) + e�((1���1)r+��1�)T� 1
� ((1� b))

1��
�

=
�
�
1
� ((1� b))

1��
�

�
w (s; s+ T )

y
�
(r � g)�1

�
1� e�(r�g)T

�	
e(�

�1(r��))T�
1
� ((1� b))

1��
��

(r (1� ��1) + ��1�)�1 (1� e�(r(1���1)+��1�)T )
	
+ e�((1���1)r+��1�)T�

1
� ((1� b))

1��
�

= w (s; s+ T )

But the left side is positive since the brackets
�
(r � g)�1

�
1� e�(r�g)T

�	
andn

(r (1� ��1) + ��1�)�1
�
1� e�(r(1���1)+��1�)T

�o
are always positive.40 So we con-

clude that (�n; �n)n is > 0 and bounded with probability 1.

40Note that
n
(r � g)�1

�
1� e�(r�g)T

�o
=1 if r � g ! 0; andn�

r
�
1� ��1

�
+ ��1�

��1 �
1� e�(r(1��

�1)+��1�)T
�o

= 1 if
�
r
�
1� ��1

�
+ ��1�

��1 ! 0
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Furthermore, Assumption 3 (ii) implies directly that (ii) P �� < 1: Assumption 3 (iii)
also directly implies �i > 1 for some i = 1; :::m. Finally P is the transition matrix of
both rn as well as of �n: Therefore Assumption 3 (iv) implies that the elements of the
trace of the transition matrix of �n are positive: �

7.1 Regularity conditions on the Markov Modulated process
(�n ; �n)n

In singular cases, particular correlations between �n and �n can create degenerate dis-
tributions that eliminate the randomness wealth. We rule this out by means of technical
regularity conditions.41

Assumption A 1 The Markov Modulated process (�n; �n)n is regular, that is

Pr (�0x+ �0 = x) 6= 1 for any x 2 R+

and the elements of the vector �� = fln�1::: ln�mg � Rm+ are not integral multiples of
the same number.

Theorems which characterize the tails of distributions generated by equations with
random multiplicative coe¢ cients of the type (3) rely on this type of "non-lattice" as-
sumptions from Renewal Theory; see for example Saporta (2005). Versions of these
assumption are standard in this literature; see Feller (1966).)

8 Appendix C: The Kesten-Goldie Theorem

Consider the special case in which (�n)n, and (�n)n are > 0, bounded with probability
1; i:i:d:, and �n satis�es: E�n < 1 and �i > 1 for some i: In this case, Kesten (1973)
and Goldie (1991) show that the tail of the distribution is asymptotic to a Pareto law

Pr >(zn > z) � cz��

where � > 1 satis�es
E (�n)

� = 1:

A simple very heuristic proof of the Theorem follows. Consider the stochastic di¤er-
ence equation

zn+1 = �nzn + �n

41We formulate these regularity conditions on (�n; �n)n, but they can be immediately mapped back
into conditions on the stochastic process (rn; yn)n .
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It has solution:

zn+N =

 
N�1Y
l=0

�n+l

!
zn +

N�1X
l=0

�n+l

N�1Y
m=l+1

�n+m

where �n+N = 1 by de�nition for the special value l = N � 1 in the last term.
Assume �n has bounded support for any n. Given realizations of �n; �n, to attain

zn+1 = z the prior period value must be zn =
z��n
�n
: For simplicity take �n = � con-

stant (but constant support will do as well). Then, letting P (z) denote the stationary
distribution of (zn)n ;

P (zn) =

Z
P

�
z � �
�n

�
� (�n) d�n

where � (�n) is the density of �n. For large z;in the tail, we can approximate the solution
by the solution to

P (zn) =

Z
P

�
z

�n

�
� (�n) d�n

by P (zn) = Cz��:

Cz�� =

Z
Cz�� (�n)

� � (�n) d�n = Cz
��
Z
(�n)

� � (�n) d�n

Therefore, � solves Z
(�n)

� � (�n) d�n = 1: �
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